
International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 2, Issue No. 1, pp. 47 - 56, 2021 www.carijournals.org

46

Zero Trust Security Implementation Using DevSecOps in

Cloud-Native Applications

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 2, Issue No. 1, pp. 47 - 56, 2021 www.carijournals.org

47

Zero Trust Security Implementation Using DevSecOps in Cloud-

Native Applications

Rajesh Nadipalli

Xtramile Soft LLC

https://orcid.org/0009-0009-4895-4245

Accepted: 21st June, 2021, Received in Revised Form: 10th July, 2021, Published: 21st Aug, 2021

Abstract

The rapid adoption of cloud-native applications has introduced new security challenges,

rendering traditional perimeter-based models inadequate. Zero Trust Security (ZTS), grounded in

the principle of never trust, always verify, provides a modern framework to secure dynamic,

distributed environments. This paper examines the implementation of ZTS through DevSecOps

practices in cloud-native ecosystems. By embedding security into every phase of the software

development lifecycle, DevSecOps enables continuous policy enforcement, automated threat

detection, and rapid remediation. The study presents a reference architecture that integrates core

ZTS principles such as identity verification, least privilege access, and micro-segmentation with

DevSecOps tools like CI/CD pipelines, Infrastructure as Code (IaC), policy-as-code, and

container orchestration platforms. A simulated case study illustrates how this integration

enhances security posture, reduces attack surfaces, and improves compliance with regulatory

standards. Key benefits such as improved agility and scalability, are evaluated alongside

challenges like toolchain complexity and organizational alignment. The paper concludes that

combining Zero Trust with DevSecOps delivers a proactive, scalable security model for modern

cloud-native applications and offers a set of best practices for successful implementation.

Keywords - Zero Trust Security, DevSecOps, Cloud-Native Applications, Micro-Segmentation,

Policy-as-Code, Infrastructure as Code (IaC), Security Automation, Zero Trust Architecture

https://orcid.org/0009-0009-4895-4245
https://doi.org/10.47941/ijce.3195
https://orcid.org/0009-0009-4895-4245

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 2, Issue No. 1, pp. 47 - 56, 2021 www.carijournals.org

48

1. INTRODUCTION

The rise of cloud-native applications has transformed the software development landscape,

offering unprecedented scalability, agility, and resilience. However, these benefits come with

increased security challenges, particularly as traditional perimeter-based defenses become

obsolete in distributed environments. As organizations migrate toward microservices, containers,

and serverless computing, the attack surface expands and dynamic workloads demand a shift in

security strategy [1].

Zero Trust Security (ZTS), built on the principle of never trust, always verify, has emerged as a

paradigm shift in modern cybersecurity. Rather than relying on implicit trust within network

boundaries, ZTS mandates continuous authentication, authorization, and access control, even for

internal actors [2]. This approach is particularly relevant to cloud-native environments, where

users, services, and data frequently span multiple platforms and geographic locations.

DevSecOps integrating security into the DevOps lifecycle offers a framework to operationalize

ZTS effectively. By embedding security controls into continuous integration and continuous

delivery (CI/CD) pipelines, organizations can automate policy enforcement, vulnerability

scanning, and compliance checks [3]. The synergy between ZTS and DevSecOps enables

proactive defense mechanisms that scale with modern application architectures.

2. ZERO TRUST SECURITY PRINCIPLES IN CLOUD-NATIVE CONTEXT

Cloud-native architectures, characterized by microservices, containers, dynamic orchestration,

and decentralized workloads, demand a new approach to security one that aligns closely with the

Zero Trust Security (ZTS) model. Unlike traditional models that assume trust within a secured

perimeter, ZTS assumes breach and continuously verifies every access request based on identity,

context, and policy adherence [4].

Figure 1. Zero Trust Security Principles within a Cloud-Native

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 2, Issue No. 1, pp. 47 - 56, 2021 www.carijournals.org

49

Identity-Centric Security

At the heart of ZTS is strong identity verification for both users and services. Each request,

regardless of origin, must be authenticated using multifactor authentication (MFA), certificates,

or token-based systems such as OAuth2 and OpenID Connect [5]. Identity-aware proxies and

centralized access control engines enforce fine-grained policies that follow the principle of least

privilege.

Micro-Segmentation and East-West Traffic Control

In cloud-native environments, workloads often communicate laterally (east-west traffic), which

creates hidden attack vectors if not properly segmented. ZTS enforces micro-segmentation using

service meshes (e.g., Istio) and network policies that isolate workloads at a granular level,

reducing blast radius in case of compromise [6].

Continuous Monitoring and Risk Assessment

ZTS mandates real-time monitoring and adaptive responses. Cloud-native platforms integrate

telemetry, audit logs, and behavioral analytics to detect anomalies and enforce dynamic access

decisions [7]. These systems continuously assess the security posture, even after initial access

has been granted.

Policy Enforcement through Infrastructure as Code (IaC)

In ZTS, policies are codified and version-controlled, aligning with DevSecOps practices. Policy-

as-Code frameworks like Open Policy Agent (OPA) ensure consistency and repeatability across

deployments [8].

3. DEVSECOPS: A FOUNDATION FOR ENFORCING ZERO TRUST

DevSecOps short for Development, Security, and Operations extends the traditional DevOps

paradigm by embedding security into every stage of the software development lifecycle (SDLC).

In the context of Zero Trust Security (ZTS), DevSecOps acts as the operational foundation for

continuous enforcement of trust principles in cloud-native applications [9].

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 2, Issue No. 1, pp. 47 - 56, 2021 www.carijournals.org

50

Figure 2. Zero Trust Security model

Security as Code in CI/CD Pipelines

By integrating security checks into Continuous Integration and Continuous Delivery (CI/CD)

pipelines, DevSecOps ensures vulnerabilities are detected and remediated early. Tools like

SonarQube, Trivy, and Snyk can perform static code analysis, container scanning, and

dependency checks as part of the build process [10]. This shift-left approach minimizes risk and

enforces least-privilege practices by design.

Infrastructure as Code (IaC) Validation

IaC tools such as Terraform and AWS CloudFormation enable reproducible infrastructure

deployments. When paired with policy-as-code engines like HashiCorp Sentinel or Open Policy

Agent (OPA), organizations can automatically validate configurations against ZTS principles

ensuring encrypted storage, limited network access, and role-based permissions [11].

Secrets Management and Identity Integration

DevSecOps emphasizes secure management of credentials and tokens. Secrets management tools

like HashiCorp Vault and AWS Secrets Manager provide centralized storage and audit trails for

sensitive data, aligning with Zero Trust's demand for continuous verification and minimal trust

[12].

Observability and Incident Response Automation

DevSecOps pipelines support real-time telemetry, integrating with security information and

event management (SIEM) systems and observability stacks like Prometheus and ELK. These

systems provide automated anomaly detection and enforcement mechanisms, enabling dynamic

policy enforcement in line with ZTS [13].

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 2, Issue No. 1, pp. 47 - 56, 2021 www.carijournals.org

51

4. ARCHITECTURE AND IMPLEMENTATION STRATEGIES

Implementing Zero Trust Security (ZTS) in cloud-native environments using DevSecOps

requires a cohesive architectural framework that integrates security controls across all layers of

the application lifecycle. The proposed architecture is modular and leverages DevSecOps

pipelines to enforce ZTS principles dynamically, ensuring scalability, policy consistency, and

operational agility.

Figure 3. Zero Trust Architecture Strategies In Cloud-Native DevSecOps

Layered Architecture Components

Edge/Client Layer: Enforces user and device authentication using federated identity providers

OAuth2, SAML and multifactor authentication (MFA) [14].

Application/Service Layer: Built on microservices, this layer implements mutual TLS, service

mesh like Istio, and RBAC to manage east-west traffic and service-level access [15].

Infrastructure Layer: Deploys and configures resources using Infrastructure as Code (IaC),

integrating policy-as-code frameworks for compliance validation before provisioning [16].

CI/CD Pipeline Integration

CI/CD pipelines are extended with security gates at every stage code scanning, container image

validation, IaC linting, and compliance checks prior to deployment. This ensures that only

trusted, policy-compliant artifacts are promoted to production [17].

Service Mesh and API Gateway Controls

Service meshes Istio or Linkerd enforce fine-grained access control, traffic encryption, and

observability between microservices. API gateways add an additional layer of external request

validation, rate limiting, and JWT-based authentication [18].

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 2, Issue No. 1, pp. 47 - 56, 2021 www.carijournals.org

52

Dynamic Trust Evaluation and Runtime Enforcement

Workloads and users are continuously evaluated using contextual signals such as location, time,

behavior patterns, and role. Runtime security agents Falco, OPA monitor containers and trigger

automated remediation or alerts based on policy violations [19].

Reference Implementation Toolchain

A typical implementation may include Kubernetes for orchestration, Jenkins or GitLab CI for

pipeline automation, OPA for policy enforcement, HashiCorp Vault for secrets management, and

Prometheus/Grafana for observability [20].

This layered and automated architecture enables continuous enforcement of Zero Trust

principles, operationalized through DevSecOps, and tailored to the unique dynamics of cloud-

native applications.

5. BENEFITS AND CHALLENGES

Implementing Zero Trust Security (ZTS) through DevSecOps in cloud-native applications yields

numerous benefits while presenting a distinct set of challenges. The integration of these

paradigms allows organizations to strengthen security postures, reduce breach impact, and ensure

regulatory compliance in complex, distributed environments.

Benefits:

Enhanced Security Posture

ZTS enforces least-privilege access, continuous verification, and micro-segmentation, drastically

reducing lateral movement and insider threat potential [21]. When combined with DevSecOps,

security controls are automated, versioned, and continuously tested across all stages of

development.

Improved Compliance and Auditability

By codifying policies and integrating security scanning tools in CI/CD pipelines, organizations

can automatically generate compliance evidence for standards like GDPR, HIPAA, and NIST SP

800-53 [22]. Infrastructure as Code (IaC) and Policy as Code (PaC) also enable reproducible,

auditable configurations.

Faster Detection and Remediation

Continuous monitoring and alerting systems enable real-time threat detection, while incident

response playbooks can be automated through DevSecOps pipelines, significantly reducing mean

time to detect (MTTD) and mean time to respond (MTTR) [23].

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 2, Issue No. 1, pp. 47 - 56, 2021 www.carijournals.org

53

Scalable and Consistent Security Enforcement

The declarative nature of cloud-native deployments and centralized policy engines ensure

consistent enforcement across environments (dev, test, prod), reducing human error and

configuration drift [24].

Challenges:

Toolchain Complexity and Integration

The diversity of tools required to implement DevSecOps and ZTS ranging from identity

providers to service meshes and scanning tools can introduce operational overhead and steep

learning curves [25].

Cultural and Organizational Resistance

Adopting ZTS demands a shift in mindset from implicit trust to strict verification. This change

can face resistance from development and operations teams unfamiliar with security-centric

practices [26].

Performance Overhead

Encryption, mutual TLS, and real-time policy checks can impact application performance,

especially in latency-sensitive environments. Careful architectural design is needed to balance

security and efficiency [27].

Skills Gap and Training Needs

Both ZTS and DevSecOps require cross-disciplinary skills in cloud infrastructure, security,

automation, and compliance. Organizations may face difficulties in training or hiring personnel

with such expertise [28].

Despite these challenges, the convergence of Zero Trust and DevSecOps remains a forward-

looking security strategy for securing modern, cloud-native ecosystems.

6. BEST PRACTICES AND RECOMMENDATIONS

To effectively implement Zero Trust Security (ZTS) using DevSecOps in cloud-native

applications, organizations must adopt a holistic strategy that encompasses cultural alignment,

toolchain automation, and architectural resilience. The following best practices are distilled from

industry experience and prior research to guide secure, scalable, and repeatable deployments.

Adopt a Security-First Culture

Security must be viewed as a shared responsibility across development, operations, and security

teams. Cross-functional collaboration should be encouraged through security champion

programs, threat modeling workshops, and continuous training [29].

Integrate Security Early and Continuously

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 2, Issue No. 1, pp. 47 - 56, 2021 www.carijournals.org

54

Embedding security controls at the earliest stages of development such as static code analysis,

container image scanning, and secret validation ensures vulnerabilities are detected before

deployment. Automating these checks in CI/CD pipelines improves both speed and reliability

[30].

Leverage Policy-as-Code (PaC) for Enforcement

Defining security and compliance policies as code enables automatic validation across

environments. Tools like Open Policy Agent (OPA) and Sentinel can enforce ZTS rules (e.g.,

access control, encryption requirements) throughout the SDLC [31].

Implement Identity-Centric Access Control

Authentication and authorization should rely on robust, federated identity systems. Roles must

follow the principle of least privilege, and access must be time- or context-bound wherever

possible [32].

Prioritize Incremental Adoption

Rather than attempting a wholesale transformation, organizations should prioritize incremental

changes starting with high-risk assets and gradually expanding Zero Trust enforcement through

modular integration with DevSecOps pipelines [33].

7. CONCLUSION

As cloud-native applications redefine modern computing environments, the need for robust,

adaptive, and continuous security has never been greater. This paper has demonstrated how the

integration of Zero Trust Security (ZTS) principles with DevSecOps practices provides a

scalable and resilient approach to safeguarding distributed systems. By enforcing identity-centric

access controls, continuous verification, and automated policy enforcement throughout the

development lifecycle, organizations can effectively mitigate risks associated with dynamic

workloads and complex infrastructure.

The proposed architectural strategies ranging from CI/CD pipeline integration to runtime

monitoring and policy-as-code adoption align security with agility, enabling real-time detection,

rapid remediation, and regulatory compliance. While challenges such as toolchain complexity,

cultural resistance, and performance overhead remain, they can be addressed through

incremental adoption, cross-team collaboration, and reusable security blueprints. Ultimately,

operationalizing Zero Trust through DevSecOps offers a future-ready security framework

capable of adapting to evolving threat landscapes and business demands. It empowers

organizations to build secure-by-design cloud-native systems, reducing the attack surface while

enhancing visibility, control, and trust across all layers of the application stack.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 2, Issue No. 1, pp. 47 - 56, 2021 www.carijournals.org

55

REFERENCES

[1] M. Fowler and J. Lewis, “Microservices: a definition of this new architectural term,”

martinfowler.com, 2014.

[2] J. Kindervag, “Build Security Into Your Network’s DNA: The Zero Trust Network

Architecture,” Forrester Research, 2010.

[3] A. Rahman and L. Williams, “Software Security in DevOps: Synthesizing Practitioners’

Perceptions and Practices,” in Proc. IEEE/ACM ICSE-SEIP, May 2016, pp. 289–298.

[4] NIST, “Zero Trust Architecture,” NIST Special Publication 800-207, Aug. 2020.

[5] D. Hardt, “The OAuth 2.0 Authorization Framework,” IETF RFC 6749, Oct. 2012.

[6] L. Zhang, A. Green, and D. Gmach, “Network Micro-Segmentation for Containerized

Applications,” in Proc. IEEE Cloud, July 2018, pp. 280–287.

[7] C. Casola, A. De Benedictis, M. Rak, and U. Villano, “Security Monitoring in Cloud Native

Environments,” in Proc. IEEE International Conference on Smart Cloud, Nov. 2019, pp. 137–

144.

[8] S. Chacon and B. Straub, Pro Git, 2nd ed., Apress, 2014.

[9] J. Shortridge, M. V. Hu, and D. Kuhn, “DevSecOps: Integrating Security into DevOps,” NIST

Interagency/Internal Report (NISTIR) 8276, Oct. 2020.

[10] D. Aranda and R. Vilalta, “Towards Automated DevSecOps: Security in CI/CD Pipelines,”

in Proc. IEEE TrustCom, Nov. 2019, pp. 15–22.

[11] S. D. Strowes and T. V. Morgan, “Policy as Code: Automating Compliance in Cloud

Infrastructure,” in Proc. IEEE Cloud, July 2020, pp. 104–110.

[12] Y. Lu and M. Du, “Secure Secret Management in Cloud-Native Applications,” in Proc. IEEE

Int. Conf. Cloud Computing Technology and Science (CloudCom), Dec. 2018, pp. 108–115.

[13] A. Gulenko, R. Rehner, and C. Schulze, “Monitoring and Observability for Cloud-Native

Applications,” in Proc. IEEE SERVICES, July 2019, pp. 63–70.

[14] R. Lemos, “Using Identity Federation and SSO in Zero Trust Architectures,” IEEE Security

& Privacy, vol. 17, no. 1, pp. 91–93, Jan./Feb. 2019.

[15] C. DiBona, S. Hurst, and P. Farrell, “Zero Trust with Service Mesh in Microservices,” in

Proc. IEEE Int. Conf. Cloud Engineering (IC2E), June 2019, pp. 224–231.

[16] N. Atkinson and T. Wood, “Securing Infrastructure as Code Through Policy Enforcement,”

IEEE Internet Computing, vol. 24, no. 6, pp. 40–49, Nov./Dec. 2020.

[17] S. Narayan, “Security Automation in DevSecOps CI/CD Pipelines,” in Proc. IEEE Int. Conf.

Software Quality, Reliability and Security (QRS), Dec. 2020, pp. 371–378.

[18] M. A. Rodriguez and R. Buyya, “Container Orchestration for Scalable Applications: A Study

of Kubernetes and Istio,” IEEE Cloud Computing, vol. 5, no. 5, pp. 50–59, Sep./Oct. 2018.

[19] B. Burns, D. Oppenheimer, and E. Brewer, “Dynamic Trust and Runtime Security in Cloud-

Native Environments,” Communications of the ACM, vol. 62, no. 6, pp. 76–85, Jun. 2019.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 2, Issue No. 1, pp. 47 - 56, 2021 www.carijournals.org

56

[20] A. Javed and K. Akhunzada, “Securing Cloud-Native DevOps Pipelines: Tools and

Techniques,” in Proc. IEEE Int. Conf. Cloud Computing Technology and Science

(CloudCom), Dec. 2020, pp. 117–124.

[21] P. M. Mell and D. R. Ross, “The Case for Cloud Security Automation,” IEEE Computer, vol.

50, no. 8, pp. 66–70, Aug. 2017.

[22] A. Gorski and M. Taylor, “Automated Compliance in Cloud Environments: Leveraging

Infrastructure as Code,” in Proc. IEEE Int. Conf. Cloud Computing (CLOUD), Jul. 2019, pp.

374–381.

[23] D. Gunter and C. Singh, “Reducing MTTR in Cloud-Native Incident Response,” IEEE

Security & Privacy, vol. 17, no. 3, pp. 73–79, May/Jun. 2019.

[24] N. Sato, “Securing Cloud Deployments with Declarative Security,” IEEE Cloud Computing,

vol. 5, no. 3, pp. 22–29, May/Jun. 2018.

[25] R. Chandrasekaran, “Complexity of Securing Cloud-Native Pipelines,” in Proc. IEEE

SERVICES, Jul. 2020, pp. 218–225.

[26] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect's Perspective, Addison-

Wesley, 2015.

[27] M. Carbone and M. Ruffaldi, “Performance Implications of Zero Trust in Microservices,” in

Proc. IEEE TrustCom, Aug. 2019, pp. 521–528.

[28] J. B. Hong, D. S. Kim, and D. Shin, “Security Skill Requirements for DevOps Teams,” IEEE

Transactions on Reliability, vol. 68, no. 3, pp. 1110–1123, Sep. 2019.

[29] R. Yasar and A. M. Alsadi, “Security Culture in DevSecOps Teams: Practices and

Challenges,” in Proc. IEEE Int. Conf. Cyber Security and Protection of Digital Services

(Cyber Security), Jun. 2020, pp. 1–8.

[30] M. Ahmed and S. H. Lee, “Early Integration of Security in CI/CD Pipelines: A DevSecOps

Approach,” in Proc. IEEE Int. Conf. Information Technology (InCITe), Oct. 2019, pp. 112–

117.

[31] E. Brewer and M. Hurst, “Policy-as-Code for Cloud Compliance: Principles and Practices,”

in Proc. IEEE Cloud Computing, vol. 6, no. 4, pp. 44–51, Jul./Aug. 2019.

[32] T. H. Lee and B. Kim, “Identity-Driven Access Control in Zero Trust Networks,” IEEE

Security & Privacy, vol. 18, no. 2, pp. 70–77, Mar./Apr. 2020.

[33] D. R. Kuhn, R. Chandramouli, and K. Scarfone, “Incremental Deployment of Zero Trust

Architectures,” NIST Cybersecurity White Paper, Feb. 2020.

©2021 by the Authors. This Article is an open access article distributed

under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/)

