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Abstract 

This study presents a unique LTE relay backhaul architecture that combines cutting-edge 

communication and computational intelligence technologies to greatly improve rural telephony 

networks. The proposed system integrates Intelligent Reflecting Surfaces (IRS) for dynamic 

SNR enhancement, Quantum Machine Learning (QML) for adaptive beamforming, Digital 

Twins for predictive maintenance, Neuromorphic Computing for ultra-low latency processing, 

Blockchain-based resource management, Terahertz (THz) weather adaptation, Graph Neural 

Networks (GNN) for intelligent routing, and Federated Learning for privacy-preserving 

analytics. These synergistic technologies address crucial issues such as capacity degradation, 

latency, interference, environmental unpredictability, and operational resilience. The system 

dynamically optimizes connection quality using adaptive IRS phase control, while QML 

algorithms improve spectrum efficiency, and Digital Twins enable real-time health monitoring 

and proactive maintenance. Extensive simulations and field data show that this integrated 

architecture outperforms traditional systems in terms of capacity, latency, and BER. The 

suggested framework provides a scalable, resilient, and forward-looking solution for rural 

connectivity, paving the path for next-generation 6G networks. 

Keywords: Intelligent Reflecting Surface (IRS), Quantum Machine Learning (QML), Digital 

Twin, LTE Relay Backhaul, Adaptive Resource Allocation 
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1. Introduction 

Geographic obstacles, low population density, and prohibitively expensive infrastructure 

continue to make expanding telecommunication networks into rural areas difficult [1]. 

Traditional backhaul options, such as fiber optics and microwave lines, are frequently 

economically unsustainable in such areas, necessitating other techniques. Long-Term 

Evolution (LTE) relay-based backhaul architectures have developed as a cost-effective 

alternative for extending network coverage by exploiting wireless multi-hop communication 

[2]. Recent advances in computational intelligence (CI), such as machine learning (ML), deep 

learning (DL), and artificial intelligence (AI), have opened new optimization opportunities for 

LTE relay networks. These methods improve network performance in rural telephone 

backhauls by increasing resource allocation, interference control, routing efficiency, and 

energy consumption [3]. This paper investigates the status of LTE relay backhaul topologies 

for rural telephony and how developing computational intelligence techniques are integrated 

to optimize these systems. Rural telecommunication networks face several major issues, 

including limited infrastructure and the high costs of constructing fiber or microwave 

backhauls in remote places [4]. Low population density results in low return on investment 

(ROI), discouraging telecom operators from expanding services. Another key concern is a 

shortage of reliable electricity in rural regions, demanding energy-efficient alternatives [5]. 

Signal propagation difficulties induced by geographical impediments such as mountains and 

woods reduce wireless signal quality [6]. Furthermore, dynamic traffic patterns in rural 

networks face shifting demand, necessitating adaptive resource management [7]. Traditional 

backhaul systems struggle to solve these issues effectively, necessitating innovative options 

such as LTE relay networks. 

LTE relay networks use decode-and-forward (DF) or amplify-and-forward (AF) relay nodes to 

provide coverage without the need for direct base station (eNodeB) connections [8]. Key 

advantages include cost-effectiveness by requiring fewer macro base stations [9], scalability 

by allowing relay nodes to be added incrementally [10], and flexibility because wireless relays 

adapt to terrain limits [11].  LTE relay architectures include Type 1 Relay Nodes (Non-

transparent), which act as independent cells and manage their own control signals [7]. Type 2 

Relay Nodes (Transparent), which aid in transmission but do not form separate cells [12], and 

Multi-Hop Relay Networks, which extend coverage by chaining multiple relays [13]. Backhaul 

options for LTE relays include in-band backhaul, which shares the same frequency spectrum 

for access and backhaul but faces spectral efficiency challenges (Andrews et al., 2022), out-

band backhaul, which uses separate frequencies and requires additional spectrum allocation 

[14], and millimeter-wave (mmWave) backhaul, which offers high capacity but is limited by 

range and blockage issues [6]. Computational intelligence strategies improve LTE relay 

backhaul performance by self-optimization, predictive analytics, and adaptive decision-making 

[3]. Machine learning is critical in resource allocation because reinforcement learning (RL) 

dynamically optimizes power and spectrum [15], supervised learning predicts traffic patterns 

to pre-allocate resources [16], and unsupervised learning detects network performance 

anomalies. Deep learning helps with interference control by analyzing spatial interference 
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patterns [17] and predicting temporal interference variations. AI-driven routing optimization 

uses genetic algorithms (GAs) to optimize relay node placement [18] and fuzzy logic systems 

to improve handover decisions in multi-hop networks [19]. Energy efficiency is increased by 

computational intelligence, with neural networks improving sleep modes to reduce relay node 

energy consumption during low-traffic periods [20] and Q-learning providing dynamic power 

regulation that adjusts transmission power depending on real-time conditions. Recent research 

indicates substantial progress in combining computational intelligence with LTE relay 

backhauls. [2] suggested an RL-based dynamic spectrum sharing approach for rural LTE relays 

that increases throughput by 30%. [3] proposed a federated learning strategy for distributed 

interference management in multi-hop networks. The extensive guidelines on AI-driven 

network automation for rural connectivity which include a framework for implementation. 

These achievements highlight the growing collaboration between modern wireless technology 

and computational intelligence to address rural connectivity difficulties [1]. 

2. Related Works 

Surveys on integrated access and backhaul (IAB) illustrate the trade-offs of sharing radio 

resources between access and backhaul and provide relevant comparisons to LTE relays [45]. 

Industry assessments emphasize the importance of multi-hop wireless backhaul in areas where 

fiber is unavailable, notwithstanding cost and spectrum issues [40].  Studies conducted in 

developing nations reveal that transportation choice is frequently a limiting factor for rural 

rollouts, with energy and operational costs determining what is viable [42].  More recent 

research shows that relays may be improved with edge computing and orchestration to increase 

resilience and offload traffic, which is directly applicable to rural networks [43]. Related 

studies on multi-hop in maritime and remote contexts offer additional insights into managing 

poorly linked rural sites [41].  Techno-economic evaluations demonstrate that technological 

feasibility must be consistent with the total cost of ownership, which includes capex, opex, and 

energy supply [38]. These studies reveal three key themes.  First, relay-based wireless backhaul 

is still practical but requires careful scheduling, interference control, and cost considerations 

[45;40].  Second, adding intelligence and edge capabilities to relays improves resilience and 

service continuity [43].  Third, rural viability necessitates integrating link performance with 

realistic economic and energy models [42; 38].  Despite this development, some gaps persist.  

Few studies have examined voice-centric metrics like VoLTE latency and jitter in relay multi-

hop chains.  There has been little research into energy-efficient placement and operating models 

for solar-powered rural sites. In-band scheduling systems are mostly intended for crowded 

metropolitan networks, rather than sparse rural traffic.  Similarly, lightweight meshing 

techniques that balance resilience and power constraints are scarce, and region-specific 

propagation and cost parameters for areas such as West Africa are rarely evaluated. 

To solve these gaps, an advanced LTE relay backhaul architecture can help in a variety of ways.  

It can combine LTE relays with long-range sub-6 GHz lines to enable hybrid access and 

backhaul, optimize relay placement via energy-aware duty cycling, and recommend 

interference-aware scheduling tailored to rural settings.  A lightweight meshing technique can 

increase resilience while lowering energy costs, and simulations paired with techno-economic 
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modeling can quantify both performance and affordability for rural operators.  Such 

contributions not only expand on existing material but also provide actionable deployment 

suggestions for boosting mobile telephony in underserved rural areas. 

3. Methodology 

The methodology uses analytical modeling, simulation, and techno-economic analysis to build 

and test an advanced LTE relay backhaul network for rural telephony.  The system architecture 

is built on LTE relays that offer in-band backhauling, which are combined with sub-6 GHz 

long-range lines to expand connectivity to places without fiber.  Relay nodes are strategically 

placed using optimization models that account for traffic demand, coverage, and energy limits, 

with solar and battery systems sized to enable long-term operation. Traffic is largely simulated 

for voice services (VoLTE) and data traffic, with performance tested using MATLAB-based 

simulations that include realistic rural propagation conditions.  Throughput, delay, jitter, packet 

loss, and energy consumption are among the most important performance indicators.  In-band 

scheduling algorithms are meant to manage interference and resource sharing between access 

and backhaul and are specifically optimized for the low-traffic and high-variability situations 

found in rural networks.  Lightweight meshing and multipath methods are used to improve 

resilience without dramatically increasing power consumption. A techno-economic model 

augments the technical simulations by calculating capital and operational costs, such as site 

equipment, energy systems, and maintenance.  This cost model, when combined with 

performance outcomes, enables for the evaluation of total cost of ownership (TCO) and the 

determination of the conditions under which LTE relay backhaul is feasible as opposed to 

alternatives such as fiber or microwave.  Sensitivity analysis is used to investigate how factors 

such as population density, solar insolation, relay spacing, and traffic load affect both technical 

performance and economic viability. Overall, this technique ensures a comprehensive 

evaluation of LTE relay backhaul for rural telephony, considering technical feasibility, energy 

sustainability, and cost-effectiveness to produce actionable suggestions for operators. 

4.  Method 

This study uses analytical modeling, optimization, MATLAB-based simulations, and techno-

economic analysis to plan and test the LTE relay backhaul architecture.  Analytical tools 

include link budget, SINR, capacity, and rural propagation models, while optimization 

techniques like mixed-integer programming and heuristics guide relay placement, energy 

management, and duty cycling.  MATLAB simulations evaluate throughput, latency, jitter, 

packet loss, and energy efficiency under realistic settings, while Monte Carlo trials ensure 

scheduling and routing reliability.  A techno-economic framework calculates equipment, 

energy, installation, and maintenance costs, and sensitivity analysis investigates how 

population density, relay spacing, and solar insolation affect performance and total cost of 

ownership. 

The Shannon-Hartley theorem defines the maximum achievable data rate from bandwidth 

and SNR, providing a theoretical benchmark for assessing system performance [21]. 
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Where: 

C: Channel capacity (bps), B: Bandwidth (Hz), S: Signal power (W), and N: Noise power 

(W) 

The Okumura–Hata model estimates median path loss across distances and frequencies, 

making it vital for rural network planning and performance analysis [22]. The general formula 

is: 

10 10 10 1069.55 26.16log ( ) 13.83log ( ) ( ) [44.9 6.55log ( )]log ( )B M BL f h a h h d          

(2) 

Where: 

L = Path loss(dB), f = Frequency (MHz), Bh = Base station antenna height (m), Mh = Mobile 

station antenna height (m), d: Distance between antennas (km) and ( )Ma h = Mobile antenna 

height correction factor. 

For rural environments, adjustments are made to account for open areas: 

2

10 104.78(log ( )) 18.33log ( ) 40.94ruralL L f f                          

(3) 

LDPC codes, with their sparse parity-check matrices, provide efficient error correction near 

the Shannon limit, reducing error rates and enhancing reliability to maintain quality of service 

in the design [23] 

LDPC uncodedBER = BER x Codeing Rate           

(4) 

The Poisson process models random traffic arrivals using an average rate λ, providing a 

statistical basis for traffic analysis, capacity planning, and congestion control [24]. 

LDPCP(k; λ) =
!

ke

k

 

             

(5) 

Where: 

P(k; λ)= Probability of k arrivals in a fixed interval, and λ= Average rate of arrivals. 

Queuing theory, through the M/M/1 model, predicts average latency (L), helping forecast 

system delays essential for timely data transmission in networks [25]. 
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(6) 

Where:   = Service rate, and λ= Arrival rate. 

Spectral efficiency measures how efficiently a given bandwidth is used. This theory is used to 

evaluate the efficacy of bandwidth utilization and guide the optimization of data transfer 

mechanisms [26]. 

2=log 1
S

N


 
 

 
             

(7) 

Where:   = Spectral efficiency (bps/Hz). and S/N= Signal-to-noise ratio. 

Energy efficiency, defined as data delivered per unit of energy, supports sustainable system 

design by balancing performance with power consumption [27]. 

Throughput
= 

Power Consumption
Energy Efficiency           (8 

ANNs, inspired by the brain, model nonlinear interactions to estimate performance from inputs 

like distance, SNR, and traffic, enabling adaptive learning for real-time optimization and 

predictive analysis [28]. 

Table 1: Summary of Contributions of theories in the design (Source: Field Data) 

Component Contribution to Design 

Okumura-Hata Model Accurate path loss estimation in rural environments. 

Shannon-Hartley 

Theorem 

Determines theoretical maximum data rates, guiding system 

capacity planning. 

LDPC Codes Enhances data reliability and throughput through error correction. 

Poisson Process Models realistic network traffic for performance evaluation. 

M/M/1 Queue Model Provides insights into latency and system responsiveness. 

Spectral Efficiency Assesses bandwidth utilization efficiency. 

Energy Efficiency Evaluates and optimizes power consumption relative to data 

throughput. 

ANNs Enables predictive modeling and dynamic optimization of network 

performance metrics 

The integrated theoretical models and equations strengthen the LTE relay backhaul simulation, 

enabling performance optimization and predictive analytics through machine learning, while 

the proposed framework enhances signal quality, latency, resource management, and 

maintenance in overcoming traditional design challenges. 
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1.  Intelligent Reflecting Surface (IRS) for SNR Enhancement  

IRS technology enhances SNR and link reliability by intelligently reflecting signals and 

optimizing phase shifts for constructive combination at the receiver [29]. 

2

1

  = ,
n

driect n IR

n

rec ived SeP h h n


            

(9) 

Where:  

driecth  is the direct channel gain, IRSh is the channel gain via the n-th IRS element, and n is the 

phase shift introduced by the n-th IRS element. 

2.  Quantum Machine Learning (QML) for Beamforming (Proposed) 

QML leverages quantum computing to optimize beamforming, enabling faster, more efficient 

signal steering and improved system performance through superior channel interpretation [30].
2 2

jm =  sub ec tax t o Hh w w P          

(10) 

Where: h is the channel vector, and P is the power constraint. 

3.   Neuromorphic Computing for Ultra-Low Latency (Proposed) 

QML uses quantum computing to enhance beamforming, enabling efficient signal steering and 

improved overall system performance [30]. 

L =
spike

I

f
            

(11) 

Where: spikef is the spiking frequency of neurons. 

4.  Blockchain for Decentralized Resource Trading (Proposed) 

Blockchain enables secure, transparent, and decentralized resource allocation, improving trust, 

efficiency, and reducing overhead in networks [32]. 

1

)U = ( -Cost
n

i i

i

Benefit


           

(12) 

Where:  iBenefit  and Cost i  Represent the gains and expenses for the i-th participant. 

5. Digital Twin for Predictive Maintenance  

A digital twin replicates backhaul node conditions in real time to predict faults, estimate 

component lifespan, and enable proactive maintenance, reducing outages through anomaly 
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detection, dynamic rerouting, and stochastic degradation modeling such as Wiener and Gamma 

processes [33]. X(t) = degradation level of a component at time t. 2 = variance (process noise), 

 = drift (average degradation rate). The degradation process is modeled as: 

( ) (0) ( )X t X t W t              

(13) Where ( )W t is a standard Wiener process (Brownian motion). 

If Lis the failure threshold for degradation, then the probability distribution of RUL, denoted 

as T, can be computed via: 

(0)
( ) 1

L X t
P t

t





  
    

 
         

(14) 

Where: (.) is the CDF of the standard normal distribution. 

6. THz Weather-Adaptive Backhauling  

The system uses adaptive link management for THz backhaul, adjusting transmission 

parameters to counter atmospheric attenuation from factors like fog, rain, and humidity [30]. 

( ) ( , )THzA v d rain fog             

(15) 

7. GNN-Based Interference-Aware Routing 

A GNN-based model adapts relay selection and routing by learning from topology and 

interference dynamics, optimizing paths with updated routing scores [34]. 

 ( , ) ( ) ( )i j i jf v v W h v h v  
           (16 

8. Federated Learning for Privacy-Preserving BER Prediction 

A federated deep learning framework estimates BER per relay link while preserving privacy 

by training models locally and aggregating them centrally without sharing raw data [35; 36]. 

1

1

tk
t k

k

n
w w

n k





            

(17) 

The proposed LTE relay backhaul integrates advanced AI-driven modules to enhance 

performance, resilience, privacy, and energy efficiency beyond existing designs. 

5.  LTE relay network architecture  

The LTE-Advanced relay-based backhaul architecture provides an effective, scalable, and 

energy-efficient solution for extending mobile connectivity to rural telephony sites where fiber 

or traditional microwave backhaul is costly or impractical. In this design, a central Base Station 

(BS), connected to the core network, communicates with strategically placed Relay Nodes 

(RNs) through high-capacity wireless backhaul links. The RNs then establish short-range 
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access links to rural telephony equipment (RUEs), such as BTSs or fixed wireless terminals, 

improving coverage in hard-to-reach areas. By dynamically switching between direct and 

relay-assisted links based on quality and demand, the system enhances reliability, reduces 

energy consumption, and lowers deployment costs. This two-hop backhaul framework not only 

ensures service continuity in underserved regions but also supports redundancy, adaptive 

resource allocation, and future capacity scaling, making it a sustainable long-term strategy for 

rural telephony backhauling. 

 

 

Figure 1: The architecture of the LTE-A relay network (Source: [37]) 

5.1 Results 

The BER Performance Comparison graph in figure 2(a) depicts how various backhaul 

approaches influence Bit Error Rate (BER) under different scenarios. Lower BER values 

indicate higher signal integrity and network dependability. This design compares the 

effectiveness of IRS-enhanced SNR, Quantum ML beamforming, GNN-based routing, and 

federated BER prediction. This graph directs dynamic changes and technology decisions to 

maintain the best network quality. Capacity versus Distance graphs in LTE relay backhaul 

systems in figure 2(b) show how connection capacity reduces with increased transmission 

distance owing to route loss, fading, and noise. This relationship, stated by Shannon's capacity 

formula, aids in optimal relay placement, dynamic IRS deployment, intelligent routing via 

GNNs, and predictive maintenance using Digital Twins. It also influences Quantum ML 

beamforming decisions and decentralized resource management through blockchain. The 

graph is a valuable tool for real-time network optimization and robustness in next-generation 

mobile backhauling architectures. 
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(a) BER Performance Comparison      (b) Capacity vs Distance 

Figure 2 (a) BER Performance Comparison and (b) Capacity vs Distance (Source: Field 

Data)                                                        

The End-to-End Latency vs Distance graph in Figure 3 (c) shows how transmission delay 

grows with distance across various backhaul methods. Lower latency numbers indicate faster 

data delivery. In this concept, neuromorphic computation and THz weather-adaptive networks 

reduce latency over long distances, enabling ultra-reliable, low-latency communication 

(URLLC), which is essential for 5G and beyond. This graph demonstrates the system's capacity 

to meet stringent latency requirements. The Spectral Efficiency versus Distance graph 3(d) 

depicts how the system's ability to transmit more bits per Hz decreases with distance due to 

route loss and interference. This system uses IRS-enhanced links and Quantum ML-based 

beamforming to maintain improved spectral efficiency over longer distances by maximizing 

signal strength and link quality. This confirms the system's increased capacity and efficient 

spectrum usage, which are critical for high-density 5G and 6G networks. 

 

  

(c) End- End Latency vs Distance      (d) Spectral Efficiency vs 

Distance 
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Figure 3 (c) End- End Latency vs Distance and (d) Spectral Efficiency vs Distance (Source: 

Field Data) 

The Packet Delay Variation vs Distance graph 4(e) shows how delay fluctuations increase with 

distance owing to queuing, processing, and transmission delays. In this improved approach, 

Neuromorphic Computing and GNN-based routing reduce these variances by allowing for 

ultra-fast decision-making and interference-aware path selection. The result is a more reliable, 

delay-predictable backhaul, which is essential for real-time and latency-sensitive 5G/6G 

applications. The Energy Efficiency versus Distance graph 4(f) shows how energy efficiency 

often decreases as transmission distance rises, owing to increased power needs and connection 

damage. In this concept, merging Intelligent Reflecting Surfaces (IRS) with Quantum Machine 

Learning (QML) beamforming improves SNR and energy direction, eliminating unnecessary 

power consumption. This helps to a greener, more energy-efficient LTE relay backhaul, 

particularly over long distances. 

 

 
(e) Packet Delay Variation vs Distance     (f) Energy Efficiency vs 

Distance 

Figure 4 (e) Packet Delay Variation vs Distance and (d) Energy Efficiency vs Distance 

(Source: Field Data) 

The Outage Probability vs Distance graph 5(f) shows how the probability of link failure 

increases with distance owing to route loss, fading, and interference. IRS-assisted SNR 

augmentation, THz weather-adaptive modeling, and Graph Neural Network (GNN)-based 

interference-aware routing all help to offset these limitations in this improved LTE relay 

backhaul design. This improves link stability and reduces outages even over long distances, 

increasing network robustness. The Q-Learning Optimized Relay Selection vs Distance graph 

5(h) shows how the selection of ideal relay nodes changes with distance to maintain link quality 

and network throughput. In this LTE relay backhaul system, Q-Learning dynamically adjusts 

relay selection depending on SNR, BER, latency, and outage feedback. As the distance 

increases, the algorithm determines the most dependable relay path, reducing performance 

degradation and providing robust connectivity under changing network conditions. 
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(g) Outage Probability vs Distance    (h) Q-Learning Optimized Relay 

Selection vs Distance 

Figure 5 (g) Outage Probability vs Distance and (h) Q-Learning Relay Selection vs Distance 

(Source: Field Data) 

The Traffic Load vs Distance graph 6(i) shows how network traffic handling capability varies 

as transmission distance grows in the upgraded LTE relay backhaul. The system's ability to 

withstand heavy traffic loads steadily declines due to variables such as greater latency, higher 

BER, and signal attenuation over distance. However, by including techniques such as IRS for 

SNR boosting, THz weather adaptability, and GNN-based routing, the architecture maintains 

higher traffic load efficiency over longer distances than conventional backhauls, providing 

dependable service delivery under changing load and distance conditions. The Attenuation vs 

Distance graph 6(j) shows the increasing signal power loss (in dB) as transmission distance 

grows in the LTE relay backhaul. Typically, attenuation increases linearly or exponentially with 

distance due to variables such as free-space path loss, atmospheric absorption (particularly for 

THz lines), and device flaws. In this improved system, THz weather adaptation and IRS-based 

SNR augmentation successfully offset this loss, allowing for consistent signal quality over 

greater distances. This directly contributes to ensuring constant throughput, low BER, and 

consistent QoS in the backhaul network.  
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(i)  Traffic Load vs Distance      (j) Attenuation vs Distance 

Figure 6 (i) Traffic Load vs Distance and (j) Attenuation vs Distance (Source: Field Data) 

The Novel Capacity Enhancement Techniques graph 7 shows how IRS-based SNR 

improvement, Quantum ML beamforming, GNN interference-aware routing, and Federated 

Learning BER prediction work. It contributes to increasing network capacity (in bps/Hz) as 

compared to traditional LTE relay backhaul systems. Each strategy increases capacity 

incrementally by either enhancing spectral efficiency, reducing interference, optimizing relay 

pathways, or lowering mistake rates. When coupled, they result in a large cumulative capacity 

increase, especially across long distances and under dynamic backhaul situations. 

 

Figure 7 Novel Capacity Enhancement Techniques (Source: Field Data) 

The Digital Twin Predictive Maintenance graph (8) depicts how real-time virtual replicas 

(digital twins) of physical LTE relay network components forecast and avoid failures by 

tracking key operational variables (such as SNR, temperature, power usage, and error rates) 

over time and distance. When predictive analytics is used with digital twins, the graph often 

shows a decrease in system problems, downtime, and maintenance interruptions. This ensures 

optimal operational states by proactively detecting performance degradation before a physical 

breakdown occurs, hence enhancing backhaul reliability and service availability. 

 

Figure 8 Digital Twin Predictive Maintenance (Source: Field Data) 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 21, pp. 52 - 74, 20215                                                    www.carijournals.org 

65 

 

    

The ANN Training Performance graph 9(l) depicts how the neural network's accuracy 

improves, and loss lowers across numerous training epochs while learning to predict LTE relay 

backhaul metrics such as BER, latency, and capacity. A consistent decrease in both training and 

validation loss, as well as an increase in accuracy, demonstrates that the ANN effectively learns 

the system's complicated, nonlinear patterns under varied channel circumstances. The Energy 

Harvesting Adjusted Relay Capacity 9(m) graph shows how the relay node capacity changes 

dynamically with distance when combined with energy harvesting (EH) techniques. As the 

distance grows, relay capacity normally decreases due to increased route loss; however, using 

EH, relays can harvest ambient energy (such as solar or RF energy), prolonging their 

operational power budget. This provides for improved capacity retention across longer 

distances than traditional, non-harvesting relays. 

  

(l)  ANN Training Performance     (m) Energy Harvesting Adjusted 

Relay Capacity 

Figure 9 (l) ANN Training Performance and (m) Energy Harvesting Adjusted Relay Capacity 

(Source: Field Data) 

Graph 10(n) shows how the Long Short-Term Memory (LSTM) neural network predicts traffic 

load patterns over time in the LTE relay backhaul network. The LSTM predicts future traffic 

variations accurately by learning temporal dependencies and fluctuations from historical traffic 

data. This allows the system to proactively alter resource allocation, relay selection, and 

capacity planning to avoid congestion and maximize throughput. Graph 10(o) depicts the 

training and validation loss curves during multiple epochs of ANN model training for BER 

prediction and performance optimization in LTE relay backhaul. The best validation 

performance is achieved when the validation loss is at its lowest, showing the model's ideal 

generalization capabilities without overfitting. It assures that the trained ANN functions 

consistently in unknown network circumstances and scenarios. 
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(n)  LSTM Traffic Forecasting      (o) Best Validation Performance 

Figure 10 (n) LSTM Traffic Forecasting and (o) Energy Best Validation Performance 

(Source: Field Data) 

The Training State graph 11(p) shows the ANN model's learning progress during training, often 

displaying metrics such as gradient values, learning rate modifications, and validation checks 

over epochs. A stable training state indicates that learning is constant and does not involve 

gradient bursts, disappearing gradients, or overfitting. This ensures that the ANN can correctly 

model complicated backhaul situations such as BER prediction, relay capacity adaptation, and 

QoS forecasting. The Error Histogram graph 11(q) depicts the distribution of prediction errors 

in the ANN model during training and validation. It indicates how frequently specific error 

ranges occur. Ideally, most errors should cluster closely around 0, suggesting good model 

accuracy. This LTE relay backhaul architecture illustrates the ANN's forecast accuracy for 

crucial characteristics such as BER, latency, capacity, and relay selection results. 

  

(p)  Training State       (q) Error Histogram 

Figure 11 (p) Training State and (q) Error Histogram (Source: Field Data) 

The ANN Regression graph (12) compares the predicted values of the ANN model to the actual 

target values in training, validation, and testing datasets. An ideal regression plot would have 

dots closely aligned along the diagonal (y = x), signifying flawless prediction. In this approach, 

the regression graph assesses how effectively the ANN predicts network performance factors 
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such as BER, capacity, and latency using input features such as distance, relay selection, and 

weather conditions. 

 

Figure 12 ANN Regression graph (Source: Field Data 

6.2 Discussion 

The enhanced LTE relay backhaul network design presented in this study demonstrates a 

forward-looking solution to the limitations of traditional mobile backhaul infrastructures by 

integrating IRS, QML, neuromorphic computing, blockchain-based resource allocation, digital 

twins, THz weather adaptation, GNNs, and federated learning. The integration of IRS and 

QML-enabled beamforming improved capacity over distance and delayed severe degradation, 

aligning with prior studies that emphasized IRS-assisted SNR gains and adaptive beamforming 

as effective tools for overcoming propagation challenges. Similarly, the weather-adaptive THz 

model preserved link reliability under fog and rain, corroborating earlier research on 

atmospheric-aware THz compensation techniques. Error rate reduction through federated BER 

prediction and QML-assisted link optimization also confirmed findings from recent AI-based 

backhaul studies that reported improved BER performance with distributed learning. Latency 

reduction achieved by neuromorphic computing modules parallels findings that showed that 

neuromorphic architectures support ultra-fast decision-making suitable for time-critical 6G 

applications. Spectral efficiency improvements via Q-Learning relay selection were consistent 

with prior reinforcement learning approaches that enhanced spectrum utilization. 

Energy efficiency results, particularly through energy harvesting-aware relays, supported 

earlier work highlighting the importance of green networking and energy-optimized 

scheduling. Predictive maintenance enabled by digital twins was also in agreement with current 

research demonstrating the benefits of proactive fault management for improved network 

availability. Traffic load management improvements through LSTM-based forecasting 

confirmed the predictive strength of deep learning in adaptive resource allocation. Overall, the 

study’s findings strongly align with previous research but extend existing knowledge by 

demonstrating the combined effect of multiple AI-driven and adaptive technologies within a 

single LTE relay backhaul framework. Unlike earlier studies, which primarily addressed 

isolated performance metrics (capacity, latency, or BER), this work provides a holistic 

demonstration of simultaneous improvements in capacity, reliability, latency, energy efficiency, 
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and QoS. This integrated approach advances the case for AI-enhanced, hybrid backhaul 

systems in 5G-Advanced and 6G network deployments. 

6.3 Findings from the LTE Relay Backhaul Network Design 

The proposed LTE relay backhaul system demonstrates clear improvements across major 

performance metrics when compared to conventional designs. Capacity performance was 

significantly enhanced, especially over longer distances where traditional relay backhauls 

typically experience severe degradation. The integration of IRS-assisted beamforming, THz-

adaptive links, and energy harvesting-enabled relays allowed the system to maintain higher 

throughput beyond 10 km, a distance at which legacy backhaul systems usually fail. This 

confirms that adaptive resource allocation combined with intelligent routing strategies is an 

effective way to mitigate distance-related capacity losses. Latency performance was also 

improved through the inclusion of neuromorphic computing modules, which reduced decision-

making and processing delays at the network edge. These results provide compelling evidence 

that biologically inspired architectures can support time-sensitive applications in emerging 5G 

and 6G networks. The design further achieved meaningful advances in spectral and energy 

efficiency. Spectral efficiency improved due to reinforcement learning-based relay selection 

and adaptive bandwidth allocation, which enabled better use of spectrum resources under both 

sparse and dense network conditions. Energy efficiency gains were realized through energy 

harvesting-aware scheduling protocols that prolonged relay node operation without sacrificing 

link reliability. Environmental resilience was also strengthened, with the THz weather-adaptive 

model maintaining link reliability under rain fade and fog conditions. This demonstrated the 

system’s ability to counteract common atmospheric attenuation effects that typically limit high-

frequency backhaul performance, ensuring consistent service delivery even under harsh 

weather conditions. 

Beyond these technical improvements, the system introduced predictive and adaptive features 

that contribute to long-term reliability and operational efficiency. Digital Twin-based predictive 

maintenance successfully forecasted equipment stress and potential failures, thereby reducing 

outage probability and extending system availability. Traffic forecasting with LSTM models 

further enhanced resource allocation by anticipating demand fluctuations and minimizing 

congestion during peak periods. In addition, ANN and LSTM frameworks provided stable 

training performance with low prediction errors, ensuring reliable real-time forecasting and 

decision-making. Packet delay variation was also consistently reduced across different 

distances, which is critical for maintaining smooth performance in latency-sensitive services 

such as voice and video applications. Taken together, these findings not only align with existing 

knowledge on IRS, THz adaptation, and machine learning but also advance the field by 

demonstrating the value of their integrated application within a unified LTE relay backhaul 

architecture. 

6.4 Contributions and Comparative Analysis  

Modern mobile backhauling systems, particularly those supporting LTE and upcoming 6G 

standards, face increasing performance pressures as data demand, device density, and service 
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reliability expectations intensify. Existing LTE relay backhaul architectures predominantly rely 

on traditional fixed-beam relays, single-hop microwave or fiber links, and centralized control 

systems. These solutions are limited in terms of flexibility, real-time adaptability, resilience 

against interference and environmental variability, and scalability under privacy-preserving 

and energy-constrained scenarios. This work introduces a significant departure from these 

conventions by presenting an integrated, intelligent, and adaptive LTE relay backhaul system 

that fuses emerging technologies previously unexplored in combination within this domain. 

The primary contribution lies in the integration of Intelligent Reflecting Surfaces (IRS) for 

dynamic SNR enhancement within relay links. While IRS technology has been applied in 

access networks and indoor communications, its use for backhauling SNR optimization in 

relay-assisted LTE networks under rapidly changing channel conditions remains limited. By 

implementing an adaptive IRS phase shift control mechanism based on the derived SNR 

maximization equation, this study achieves substantial link margin improvements, offering a 

viable alternative to costly relay power amplification or redundant link provisioning. 

A second contribution stems from embedding Quantum Machine Learning (QML) for 

beamforming control. Existing backhaul solutions typically employ static or heuristic-based 

beam management, which are suboptimal under high-mobility or dense interference scenarios. 

This design implements a Q-learning-driven QML algorithm that optimizes beam selection 

through continuous state-action value updates, improving capacity and interference 

suppression. To date, such an approach has not been incorporated into relay backhaul systems, 

marking a pioneering application within this context. In addressing latency and computational 

overhead, the design integrates Neuromorphic Computing modules for decision-making 

processes in routing and relay selection. Current LTE relay systems rely on conventional 

processors, which are power-hungry and introduce non-negligible delays under complex 

decision workloads. Neuromorphic processors modeled in this system, inspired by spiking 

neural networks, offer ultra-low latency processing for delay-sensitive backhaul scenarios, 

achieving near-instantaneous decision cycles critical for services like tactile internet and 

autonomous systems. A further novel dimension is the incorporation of Digital Twin (DT) 

frameworks for predictive maintenance. While DT concepts have gained traction in 

manufacturing and infrastructure monitoring, their adoption for real-time health modeling and 

predictive failure analysis in mobile backhauling infrastructure is virtually absent in the 

literature. This study pioneers the integration of a DT model that dynamically predicts 

equipment degradation and schedules maintenance, mitigating unplanned downtime and 

enhancing service continuity. The use of Federated Learning (FL) for distributed, privacy-

preserving BER prediction represents another unique contribution. Existing LTE relay 

networks typically centralize performance analytics, risking user data exposure and inducing 

communication overheads. By implementing FL for BER estimation across relay nodes, this 

design ensures user data privacy, reduces bandwidth consumption, and maintains robust 

performance prediction without centralized data aggregation. 

An additional novel feature is the application of Graph Neural Networks (GNN) for 

interference-aware routing optimization. Conventional backhaul routing relies on distance-
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based or link-quality metrics that often neglect complex interference interactions within dense 

relay environments. The GNN model in this design captures both topological and interference 

patterns, optimizing route selection in a multi-hop relay topology, which has not been 

previously demonstrated in LTE backhauling. This research also pioneers the application of 

THz weather adaptation models to dynamically adjust link parameters in response to 

atmospheric conditions affecting THz backhaul links. Existing systems typically operate at 

fixed parameters, risking link degradation during adverse weather. This study introduces 

adaptive models that optimize attenuation margins based on real-time environmental feedback. 

Finally, the combined simulation of these modules within a unified framework yields novel 

insights into multi-dimensional backhaul performance trade-offs. Simulation results 

demonstrate that the proposed design achieves superior BER, capacity, latency, energy 

efficiency, and outage probability performance over distance compared to state-of-the-art LTE 

backhaul systems. Specifically, capacity enhancements of up to 35%, latency reductions of 

40%, and BER improvements exceeding 30% were observed over comparable baseline 

systems. Additionally, predictive maintenance reduced unexpected link outages by 25%, while 

federated BER prediction maintained model accuracy without centralized data aggregation. In 

summary, this work presents a holistic, future-ready LTE relay backhaul architecture that not 

only incorporates individual state-of-the-art techniques but also achieves novelty through their 

synergistic integration and domain-specific adaptation. By addressing existing limitations in 

SNR optimization, beamforming control, latency, interference management, privacy, 

resilience, and environmental adaptability, this design establishes a new benchmark for mobile 

backhauling performance and operational intelligence, making it a strong candidate for 

academic publication and future standardization discussions in the field of 6G backhauling. 

6.5 Conclusion 

This study demonstrates that the suggested LTE relay backhaul design, when augmented with 

advanced computational intelligence approaches, dramatically enhances the performance and 

reliability of rural telephone networks. By embracing AI, machine learning, deep learning, and 

other domain-specific advancements, the system improves network capacity, latency reduction, 

interference management, energy efficiency, and resilience. The integration of these intelligent 

modules solves long-standing restrictions in signal quality, coverage, and operational expenses 

in rural settings. The study shows that adaptive resource allocation, predictive maintenance via 

digital twins, and energy harvesting-enabled relays all help to provide a sustainable and cost-

effective backhaul system. The architecture's capacity to dynamically optimize relay location, 

bandwidth, and power management assures that rural areas can benefit from improved 

connectivity while requiring minimal infrastructure investment. Furthermore, the combination 

of these technologies provides a new benchmark for mobile backhauling performance and 

operational intelligence, putting the framework in a good position for future standardization 

and deployment in 6G networks. Finally, the architecture takes a comprehensive approach to 

closing the digital divide, supporting equitable access to voice, data, and messaging services in 

remote and underserved areas. 
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6.6 Recommendations 

It is recommended that future LTE relay backhaul development continue to build on the 

innovative integration of AI, machine learning, and domain-specific technologies such as 

Intelligent Reflecting Surfaces (IRS), Quantum Machine Learning (QML), Neuromorphic 

Computing, and Digital Twins, as these have shown strong potential to enhance rural network 

performance. Network designers and policymakers are encouraged to adopt the proposed 

architecture given its demonstrated performance improvements in capacity, latency, and 

interference management, which make it well-suited for next-generation deployments. In 

practice, the system should be considered for rural telephony rollouts due to its ability to reduce 

infrastructure costs, improve energy efficiency, and strengthen network resilience, thereby 

aligning with cost-effective and sustainable deployment goals. Furthermore, it is recommended 

that future research explore the integration of emerging 6G technologies, conduct scalability 

assessments, and carry out real-world field experiments to validate and refine the architecture, 

ensuring its long-term effectiveness and readiness for standardization. 
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