
International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

19

Scalable Microservices Using Java and RESTful APIs on the Cloud

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

20

Scalable Microservices Using Java and RESTful APIs on the Cloud

 Rajesh Nadipalli

Xtramile Soft LLC

https://orcid.org/0009-0009-4895-4245

Abstract

The adoption of microservices has revolutionized how scalable and resilient software systems are

designed and deployed in cloud environments. This article examines the development of scalable

microservices using Java and RESTful APIs, focusing on their implementation within cloud-

native architectures. Java, with its robust ecosystem and mature frameworks like Spring Boot

and Quarkus, remains a leading choice for building distributed services. RESTful APIs facilitate

seamless communication between loosely coupled components, promoting flexibility and

maintainability. The study explores containerization with Docker, orchestration with Kubernetes,

and integration of CI/CD pipelines for efficient deployment. It also addresses critical aspects of

scalability, including load balancing, caching, and performance optimization techniques specific

to Java-based services. Observability practices such as distributed tracing, centralized logging,

and health monitoring are discussed to enhance service reliability and fault tolerance. The

practical benefits and challenges of transitioning from monolithic systems to microservices in

cloud platforms like AWS and Azure. The article concludes by highlighting emerging trends,

including serverless computing and AI-driven auto-scaling, offering insights for researchers and

practitioners aiming to build robust, cloud-ready microservices architectures.

Keywords: Microservices Architecture, Java, RESTful APIs, Cloud Computing, Kubernetes,

Docker, Scalability, API Gateway, Containerization, DevOps

https://orcid.org/0009-0009-4895-4245
https://doi.org/10.47941/ijce.3240

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

21

1. INTRODUCTION

The rapid evolution of cloud computing and the increasing demand for agile, scalable, and

resilient applications have led to the widespread adoption of microservices architecture. Unlike

monolithic systems, microservices decompose applications into loosely coupled, independently

deployable services that communicate through lightweight protocols, typically RESTful APIs.

This design paradigm enables continuous integration and delivery, better fault isolation, and

horizontal scaling, all of which are essential in dynamic cloud environments [1], [2]. Java

remains a dominant language in enterprise software development, owing to its platform

independence, extensive libraries, and mature ecosystem. Frameworks such as Spring Boot and

Jakarta EE have significantly simplified the development of RESTful microservices by offering

built-in support for dependency injection, configuration management, and API design [3]. When

deployed in conjunction with container technologies like Docker and orchestrated using

platforms such as Kubernetes, Java-based microservices gain enhanced scalability, resource

efficiency, and resilience [4].

Despite these advantages, building scalable microservices presents challenges in service

coordination, state management, fault tolerance, and performance tuning. Furthermore,

integrating observability tools for logging, tracing, and monitoring is crucial for maintaining

operational integrity in distributed environments [5]. This article provides a comprehensive

exploration of scalable microservices using Java and RESTful APIs on cloud platforms. It delves

into architectural patterns, implementation strategies, deployment models, and real-world case

studies to highlight best practices and potential pitfalls. By referencing established techniques

and technologies, this work aims to serve as a valuable guide for both researchers and

practitioners in the field of cloud-native application development.

2. MICROSERVICES DESIGN PRINCIPLES

The foundation of a successful microservices-based architecture lies in adhering to core design

principles that promote modularity, scalability, and resilience. These principles ensure that each

service is independently deployable, maintainable, and capable of evolving without affecting the

overall system.

Figure 1. Microservices Design

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

22

Domain-Driven Design (DDD)

A core tenet of microservices design is aligning services with business capabilities through

Domain-Driven Design. DDD emphasizes modeling software based on domain logic, which

enables the decomposition of complex systems into bounded contexts logical boundaries within

which a service operates [6]. This helps in isolating responsibilities and avoiding tight coupling

across services, a common pitfall in monolithic systems.

Loose Coupling and High Cohesion

Microservices should exhibit loose coupling, meaning changes in one service should not

necessitate changes in others. This is achieved by defining well-bounded APIs using protocols

such as REST or gRPC, and by avoiding shared databases [7]. High cohesion within a service

ensures it performs a single, well-defined function, which improves reusability and

maintainability.

Statelessness and Scalability

Stateless services do not retain session information between requests, making them inherently

scalable and easier to distribute across cloud instances. Stateless design simplifies horizontal

scaling and aligns well with container orchestration platforms like Kubernetes [8].

API Design and Versioning

Designing consistent and versioned RESTful APIs is essential for enabling external clients and

internal services to evolve independently. Tools such as Swagger/OpenAPI facilitate

standardized documentation and testing of these interfaces, promoting better interoperability and

governance [9].

Decentralized Data Management

Each microservice should own its data to avoid inter-service dependency and contention.

Polyglot persistence, where each service can use the database technology best suited for its

requirements, enhances performance and scalability while supporting autonomous deployment

cycles [10].

These principles, when rigorously applied, serve as the backbone for resilient and scalable

microservices. In Java ecosystems, frameworks such as Spring Boot and Micronaut support these

design tenets through built-in annotations, configurations, and architectural scaffolding that

simplify adherence to best practices.

3. IMPLEMENTATION WITH JAVA AND REST

The implementation of microservices using Java and RESTful APIs is central to developing

scalable, maintainable, and interoperable systems in cloud-native environments. Java’s mature

ecosystem, comprehensive libraries, and support for a variety of frameworks make it particularly

well-suited for building RESTful microservices.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

23

Figure 2. Implementation with Java and REST

Java Frameworks for Microservices

Popular frameworks such as Spring Boot, Micronaut, and Dropwizard have emerged to simplify

microservices development. Spring Boot, in particular, offers rapid application setup, embedded

servers like Tomcat, Jetty, and dependency injection through Spring's inversion of control (IoC)

container [11]. Micronaut, a newer alternative, enables compile-time dependency injection and

fast startup times, making it suitable for lightweight, cloud-optimized services [12].

RESTful API Design Patterns

REST (Representational State Transfer) is widely adopted due to its statelessness, uniform

interface, and HTTP-based communication model. Implementing RESTful services in Java

typically involves defining controller classes annotated with RestController, mapping HTTP

verbs GET, POST, PUT, DELETE to service endpoints [13]. Resource modeling using nouns

and hierarchical URI structures enhances API readability and usability.

Error Handling, Logging, and Security

Robust error handling using standardized response formats like Problem Details for HTTP APIs

helps in maintaining consistent client communication. Logging frameworks such as Logback or

Log4j2 integrate seamlessly with Spring Boot and support centralized logging systems like the

ELK stack [14]. For securing APIs, Spring Security offers out-of-the-box support for OAuth 2.0,

JWT (JSON Web Tokens), and role-based access control [15].

API Documentation and Testing

Documentation is crucial for service discoverability and developer collaboration. Tools like

Swagger/OpenAPI enable auto-generation of interactive API documentation based on annotated

Java classes, reducing manual effort and errors [16]. Testing REST endpoints can be automated

using tools like JUnit, REST Assured, or Postman to ensure reliability and regression safety

during continuous delivery.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

24

Dependency Management and Build Tools

Build automation tools such as Maven and Gradle are essential for managing dependencies and

orchestrating project builds. These tools facilitate consistent, reproducible builds across different

environments and integrate with CI/CD systems like Jenkins or GitLab CI for automated testing

and deployment pipelines [17].

The Java ecosystem provides comprehensive support for implementing scalable RESTful

microservices. Its robust frameworks, standardized API design practices, and integration with

modern DevOps tooling make it an ideal choice for building distributed systems on the cloud.

4. CLOUD-NATIVE DEPLOYMENT STRATEGIES

Deploying Java-based microservices on the cloud requires strategies that embrace scalability,

resilience, and automation. Cloud-native deployment emphasizes containerization, orchestration,

and continuous integration/continuous delivery (CI/CD), enabling microservices to fully leverage

the capabilities of cloud platforms.

Containerization with Docker

Containerization packages applications and their dependencies into isolated environments,

promoting consistency across development, testing, and production. Docker has become the de

facto standard for containerization due to its ease of use and lightweight footprint [18]. Each

microservice can run in its own Docker container, ensuring independence and ease of

deployment. Developers define containers using Dockerfiles, enabling reproducible builds and

streamlined automation.

Orchestration with Kubernetes

Kubernetes is a leading container orchestration platform that automates deployment, scaling, and

management of containerized applications. It provides features such as service discovery, self-

healing, and rolling updates, which are critical for maintaining high availability in production

environments [19]. Kubernetes abstracts infrastructure complexity, enabling Java microservices

to scale dynamically based on load while ensuring resource efficiency.

CI/CD Pipelines and DevOps Integration

Continuous Integration and Continuous Delivery (CI/CD) practices automate the software

delivery lifecycle. Tools like Jenkins, GitLab CI, and CircleCI enable automated testing,

container builds, and deployment workflows [20]. When integrated with cloud services AWS

CodePipeline, Azure DevOps, CI/CD pipelines accelerate delivery and reduce human error.

Infrastructure as Code (IaC)

IaC allows infrastructure provisioning through code, enabling repeatable, version-controlled, and

testable deployments. Tools such as Terraform, AWS CloudFormation, and Ansible empower

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

25

teams to define infrastructure in declarative formats [21]. This approach supports automated

scaling, rollback, and disaster recovery for Java-based microservices.

Cloud-Native Java Support

Modern Java runtimes and frameworks GraalVM, Quarkus are optimized for cloud-native

environments. They offer fast startup, low memory consumption, and native image compilation,

improving container efficiency and cold-start times in serverless platforms [22].

These strategies collectively ensure that Java-based microservices deployed on the cloud are

resilient, scalable, and adaptable to modern software delivery demands. The combination of

containers, Kubernetes, CI/CD, and IaC transforms traditional Java applications into agile,

cloud-native services.

5. SCALABILITY AND PERFORMANCE OPTIMIZATION

Achieving scalability and maintaining high performance are fundamental goals of microservices-

based cloud architectures. The ability to efficiently scale Java-based microservices while

optimizing performance parameters ensures responsiveness, reliability, and cost-effectiveness in

dynamic workloads.

Horizontal vs. Vertical Scaling

Scalability can be approached in two primary ways: vertical scaling involves increasing the

capacity (CPU, RAM) of a single instance, while horizontal scaling distributes load across

multiple instances of a service. Cloud-native platforms favor horizontal scaling for its elasticity

and fault tolerance. Kubernetes supports horizontal pod autoscaling (HPA), automatically

adjusting the number of service instances based on CPU or custom metrics [23].

Load Balancing Strategies

Effective load balancing distributes traffic evenly across service instances to prevent bottlenecks.

Solutions such as HAProxy, NGINX, and cloud-native tools like AWS Elastic Load Balancing

or Kubernetes Services implement layer 4 and layer 7 routing, improving responsiveness and

service uptime [24]. Within a Java context, Spring Cloud integrates with service registries

Eureka, Consul to support client-side load balancing via Ribbon or Resilience4j.

Caching for Performance Boosts

Caching frequently accessed data reduces database calls and improves response times. Java

microservices benefit from caching libraries such as Caffeine, Ehcache, and Redis. Layered

caching (client-side, edge, and server-side) is a common strategy to maximize throughput [25].

JVM and Thread Pool Tuning

Java Virtual Machine (JVM) tuning is essential for optimizing memory management and

reducing latency. Parameters such as garbage collection algorithms G1, ZGC, heap size, and

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

26

thread pool configurations directly affect runtime performance. Tools like VisualVM, JConsole,

and GC logs support JVM monitoring and tuning [26].

Asynchronous Processing and Backpressure

Asynchronous message handling, using tools like Apache Kafka, RabbitMQ, or Java’s

CompletableFuture, decouples service interactions and prevents blocking under load.

Backpressure mechanisms help avoid service overload by controlling the rate of requests based

on resource availability [27].

Performance Monitoring and Profiling

Continuous profiling and monitoring of service behavior are key for identifying bottlenecks and

optimizing code paths. Java-based monitoring tools such as Prometheus with Grafana, New

Relic, and AppDynamics provide real-time performance metrics, helping teams implement

proactive optimizations [28].

Figure 3. Scalability and Performance Optimization

By combining scaling strategies with targeted optimizations across caching, load management,

and JVM tuning, cloud-deployed Java microservices can achieve resilient, high-performance

operation under fluctuating demand.

6. MONITORING, OBSERVABILITY, AND RESILIENCE

Monitoring, observability, and resilience are critical pillars for managing cloud-native

microservices, ensuring not only system availability but also rapid diagnosis and recovery from

faults. In a distributed Java-based microservices architecture, these capabilities must be built-in

and automated to support dynamic scaling and continuous delivery.

Monitoring and Metrics Collection

Monitoring provides real-time insights into system health and resource usage. Tools like

Prometheus collect time-series data such as CPU, memory, and request latencies, while Grafana

visualizes these metrics for operational analysis. Java applications commonly expose metrics

through libraries like Micrometer, which integrate seamlessly with Spring Boot and Prometheus

exporters [29].

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

27

Distributed Tracing

In microservices architectures, tracing requests across service boundaries is essential for

identifying latency sources and failures. Distributed tracing tools like Zipkin, Jaeger, and

OpenTracing allow developers to visualize end-to-end request flows. These tools can track trace

IDs through headers, enabling root cause analysis in asynchronous environments [30].

Centralized Logging

Centralized logging aggregates logs from distributed services into a single searchable repository.

ELK (Elasticsearch, Logstash, Kibana) and EFK (Fluentd) stacks are widely adopted for log

aggregation and visualization. Structured logging using JSON and correlation IDs ensures

effective tracking of service interactions [31].

Alerting and Incident Response

Automated alerting systems like Alertmanager, PagerDuty, and OpsGenie notify teams of

anomalies and critical failures. Effective alerting strategies use threshold-based, anomaly-

detection, or predictive alerting techniques to minimize noise and enable rapid response [32].

Integrating observability into the development lifecycle fosters a culture of accountability and

continuous improvement. Java-based microservices benefit greatly from these practices,

allowing organizations to deliver scalable and resilient services with confidence.

7. CHALLENGES

While microservices architectures using Java and RESTful APIs offer significant advantages in

terms of scalability, maintainability, and agility, they also introduce a unique set of challenges.

Understanding these challenges is critical for effective adoption and for shaping future research

and engineering efforts.

Complexity in Service Coordination

Managing hundreds of loosely coupled microservices demands sophisticated orchestration and

coordination mechanisms. Developers must deal with increased complexity in service discovery,

dependency management, and configuration across environments. Solutions like service meshes

Istio help mitigate these issues but introduce additional operational overhead.

Data Consistency and Distributed Transactions

Microservices typically enforce decentralized data ownership, making distributed transactions

across services problematic. Achieving consistency without compromising availability remains a

key concern. Patterns like Saga and event sourcing help manage eventual consistency, but

require developers to rethink traditional relational design principles.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

28

Security and API Management

The proliferation of APIs in a microservices ecosystem expands the attack surface. Ensuring

secure communication, authentication, and authorization especially across services and third-

party consumers is complex. API gateways and security standards OAuth 2.0, mTLS are helpful,

but the need for unified, scalable security models remains an active area of research.

Observability in Polyglot Environments

Monitoring diverse, distributed systems often built using a mix of programming languages and

tools poses challenges for observability. Standardizing metrics, traces, and logs across such

environments is difficult, necessitating platform-agnostic observability frameworks like

OpenTelemetry.

8. FUTURE DIRECTIONS

Serverless and Function-as-a-Service (FaaS)

Emerging paradigms like serverless computing and FaaS platforms AWS Lambda, Azure

Functions promise even finer-grained scalability and reduced infrastructure management. These

models complement microservices by offering event-driven execution without persistent service

overhead.

Service Mesh and Sidecar Patterns

The growing adoption of service mesh architectures introduces sophisticated control planes for

traffic management, security, and observability, allowing developers to decouple operational

logic from business code.

AI-Driven Scaling and Self-Healing

The integration of artificial intelligence and machine learning for predictive scaling, anomaly

detection, and autonomous recovery mechanisms is an emerging field with the potential to

revolutionize microservice resilience and performance management.

Standardization of Cloud-Native Java

Initiatives such as Jakarta EE and Eclipse MicroProfile aim to define open standards for

enterprise Java microservices, enabling greater interoperability, portability, and optimization for

cloud platforms.

9. CONCLUSION

The transition to microservices architecture has redefined how scalable and resilient software

systems are developed, particularly in cloud-native environments. This article examined the

foundational principles, implementation strategies, and deployment practices for building

scalable microservices using Java and RESTful APIs. Java, with its robust frameworks such as

Spring Boot and Micronaut, continues to play a vital role in enabling modular, testable, and

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

29

production-ready services. RESTful APIs serve as a lightweight, flexible communication

mechanism, ensuring seamless interoperability between distributed services. Cloud-native

deployment strategies leveraging containerization with Docker, orchestration through

Kubernetes, and automation via CI/CD pipelines and Infrastructure as Code enable teams to

achieve agility and operational efficiency. Monitoring, observability, and resilience mechanisms

are essential to ensuring the health and robustness of services in dynamic, large-scale

environments.

Despite these advantages, organizations face challenges related to service coordination, data

consistency, security, and performance optimization. As the microservices landscape continues

to evolve, emerging technologies such as service meshes, serverless computing, and AI-driven

operational intelligence promise to further enhance scalability, automation, and adaptability. The

convergence of Java, RESTful design, and cloud-native practices offers a powerful foundation

for building modern enterprise systems that are not only scalable but also agile, resilient, and

ready to meet the demands of tomorrow’s digital ecosystems.

REFERENCES

[1] J. Lewis and M. Fowler, “Microservices: a definition of this new architectural term,” [Online].

Available: [https://martinfowler.com/articles/microservices.html]

[2] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Microservices: The journey

so far and challenges ahead,” IEEE Software, vol. 35, no. 3, pp. 24–35, May/Jun. 2018.

[3] C. Richardson, Microservices Patterns: With Examples in Java. Greenwich, CT: Manning,

2018.

[4] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, Omega, and

Kubernetes: Lessons learned from three container-management systems over a decade,” ACM

Queue, vol. 14, no. 1, pp. 70–93, Jan./Feb. 2016.

[5] B. Sigelman et al., “Dapper, a large-scale distributed systems tracing infrastructure,” Google

Research, Technical Report dapper-2010-1, Apr. 2010.

[6] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software. Boston,

MA: Addison-Wesley, 2003.

[7] S. Newman, Building Microservices: Designing Fine-Grained Systems. Sebastopol, CA:

O’Reilly Media, 2015.

[8] B. Burns, Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable

Services. Sebastopol, CA: O’Reilly Media, 2018.

[9] T. J. Wolf and A. Zuegel, “RESTful API modeling language and API-first design,” IEEE

Software, vol. 34, no. 3, pp. 86–90, May/Jun. 2017.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

30

[10] M. Fowler, “Microservices and the database,” [Online]. Available:

[https://martinfowler.com/articles/microservice-database.html]

[11] C. Walls, Spring in Action, 5th ed. Shelter Island, NY: Manning Publications, 2018.

[12] G. Brown and S. Williams, “Micronaut: Building modular and performant microservices,” in

Proceedings of the Oracle Code One Conference, San Francisco, CA, Oct. 2019.

[13] R. Fielding, “Architectural styles and the design of network-based software architectures,”

Ph.D. dissertation, Univ. of California, Irvine, 2000.

[14] R. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying

Messaging Solutions. Boston, MA: Addison-Wesley, 2003.

[15] J. Turnbull, The Spring Security Reference Manual, 2019. [Online]. Available:

[https://docs.spring.io/spring-security/site/docs/]

[16] T. R. Preston-Werner, “Swagger: API documentation and testing,” GitHub, 2015. [Online].

Available: [https://swagger.io]

[17] H. Langer and B. Salazar, Gradle Beyond the Basics. Sebastopol, CA: O’Reilly Media, 2016.

[18] D. Merkel, “Docker: Lightweight Linux containers for consistent development and

deployment,” Linux Journal, vol. 2014, no. 239, pp. 2, Mar. 2014.

[19] B. Burns, J. Beda, K. Hightower, and J. Brewer, Kubernetes: Up and Running, 1st ed.

Sebastopol, CA: O’Reilly Media, 2017.

[20] P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration: Improving Software Quality

and Reducing Risk. Boston, MA: Addison-Wesley, 2007.

[21] Y. L. Trach, “Infrastructure as code with Terraform and AWS,” IEEE Cloud Computing, vol.

5, no. 3, pp. 30–36, May/Jun. 2018.

[22] T. Wuerthinger et al., “GraalVM: Run Programs Faster Anywhere,” Oracle Labs White

Paper, 2019. [Online]. Available: [https://www.graalvm.org/docs/]

[23] H. Chen, “Dynamic resource scaling in Kubernetes,” IEEE International Conference on

Cloud Computing, pp. 206–213, Jul. 2019.

[24] R. L. Grossman, “The case for cloud computing,” IT Professional, vol. 11, no. 2, pp. 23–27,

Mar./Apr. 2009.

[25] B. Burke, Caching Strategies for Web Applications, Red Hat, 2018. [Online]. Available:

[https://access.redhat.com/articles/3029231]

[26] C. Terpstra, Java Performance: The Definitive Guide, 1st ed. Sebastopol, CA: O’Reilly

Media, 2014.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 1, Issue No. 2, pp. 20 - 31, 2020 www.carijournals.org

31

[27] A. Toshniwal et al., “Storm@Twitter,” in Proc. ACM SIGMOD Int. Conf. Management of

Data, New York, NY, 2014, pp. 147–156.

[28] D. Lindquist and J. Thomas, “Continuous profiling: Past, present, and future,” ACM Queue,

vol. 16, no. 4, pp. 10–23, 2018.

[29] J. Turnbull, The Prometheus Monitoring System and Time Series Database, 2018. [Online].

Available: [https://prometheus.io/]

[30] A. Rodriguez and A. Sokolova, “Distributed tracing for microservices,” in Proc. IEEE Intl.

Conf. on Cloud Eng. (IC2E), Apr. 2016, pp. 203–209.

[31] R. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging system for log

processing,” in Proc. NetDB, 2011.

[32] M. Fowler and R. Parsons, Building Microservices: Monitoring and Logging,

ThoughtWorks, 2017. [Online]. Available: [https://martinfowler.com/articles/]

2020 by the Authors. This Article is an open access article distributed

under the terms and conditions of the Creative Commons Attribution (CC

BY) license (https://creativecommons.org/licenses/by/4.0/)

