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Abstract

The increasing adoption of multi-cloud environments presents new challenges in maintaining a
consistent and robust security posture across heterogeneous platforms. Traditional threat detection
systems, often reliant on static rules and signatures, struggle to address sophisticated, distributed,
and rapidly evolving cyber threats. This paper investigates the application of machine learning
(ML) techniques for dynamic and intelligent threat detection in multi-cloud ecosystems. The study
explores a range of supervised, unsupervised, and reinforcement learning models for their efficacy
in identifying anomalies, intrusions, and advanced persistent threats (APTs). The paper introduces
a federated learning-based architecture that enables decentralized threat intelligence sharing while
preserving data privacy across cloud providers. Through experimental evaluation using benchmark
datasets such as UNSW-NB15 and CICIDS2017, the study demonstrate that ML-driven
approaches outperform traditional intrusion detection systems in terms of accuracy, adaptability,
and false positive rates. Furthermore, the study discusses implementation challenges including
data heterogeneity, model drift, and regulatory constraints. My findings highlight the
transformative potential of ML in enabling proactive and resilient cybersecurity strategies within
multi-cloud infrastructures. This research contributes to the development of intelligent, scalable,
and privacy.

Keywords: Machine Learning, Threat Detection, Intrusion Detection Systems, Federated
Learning, Cybersecurity, Artificial Intelligence.
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1. INTRODUCTION

The proliferation of cloud computing has transformed the way organizations deploy and manage
digital infrastructure. Multi-cloud strategies, which involve using multiple cloud service providers
to enhance flexibility, cost-efficiency, and resilience, are becoming increasingly common.
According to a Gartner report, over 75% of organizations now operate within a multi-cloud
environment [1]. This architectural shift introduces complex security challenges, as threat
detection and response mechanisms must now function across diverse and decentralized platforms.
Traditional security information and event management (SIEM) and intrusion detection systems
(IDS) often rely on rule-based or signature-based detection methods. These approaches are
inadequate in addressing modern threats such as zero-day exploits and advanced persistent threats
(APTSs) that evolve quickly and leave minimal traces [2]. The distributed nature of multi-cloud
infrastructures complicates centralized monitoring, making real-time and context-aware threat
detection increasingly difficult.

Machine learning (ML) has emerged as a powerful tool in cybersecurity, offering adaptive models
that can learn from historical data and detect deviations indicative of potential threats. Studies have
shown that ML algorithms, such as random forests, support vector machines, and deep neural
networks, significantly improve detection accuracy and response time [3] [4]. The application of
ML in multi-cloud environments remains underexplored, particularly concerning federated
learning and privacy-preserving analytics. This paper proposes a machine learning-driven
framework for threat detection in multi-cloud systems. the study assess existing models, propose
a federated learning approach, and validate our framework using standard datasets, highlighting
its potential to redefine cloud security paradigms.

2. MULTI-CLOUD ARCHITECTURE AND SECURITY LANDSCAPE

Multi-cloud architecture refers to the strategic use of multiple cloud service providers (CSPs) to
meet organizational requirements for availability, scalability, and vendor diversity. Unlike hybrid
cloud models, which combine public and private clouds, multi-cloud setups involve the concurrent
use of two or more public cloud platforms, such as Amazon Web Services (AWS), Microsoft
Azure, and Google Cloud Platform (GCP), without necessarily integrating with private
infrastructure [5]. This approach offers numerous advantages, including reduced dependency on a
single vendor, optimized cost-performance trade-offs, and improved disaster recovery options.
The benefits come with significant security implications. Each CSP employs different security
models, APIs, and compliance standards, creating heterogeneity that complicates unified threat
monitoring and policy enforcement [6].
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Figure 1. Multi-Cloud Architecture and Security Landscape

A major concern in multi-cloud environments is the increased attack surface due to distributed
data, varied authentication mechanisms, and inconsistent access control policies. The lack of
standardization in logging and event formats across providers hinders the aggregation and
correlation of security events, making anomaly detection and incident response more challenging
[7]. Traditional security solutions are not well-suited for these dynamic environments. Centralized
intrusion detection systems often suffer from latency and limited visibility, while deploying
individual security agents on each platform leads to redundancy and performance overhead [8]. A
shift toward intelligent, decentralized, and adaptive threat detection mechanisms is imperative.
Machine learning-based solutions, especially those utilizing federated or distributed learning
models, have the potential to address these challenges by enabling context-aware, cross-platform
threat analytics without compromising data privacy.

3. MACHINE LEARNING TECHNIQUES FOR THREAT DETECTION

The dynamic nature and scale of multi-cloud environments necessitate advanced threat detection
systems capable of recognizing subtle and evolving attack patterns. Machine learning (ML) offers
a spectrum of approaches supervised, unsupervised, and reinforcement learning that enhance
detection capabilities beyond traditional signature based methods.
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Figure 2. Machine Learning Techniques for Threat Detection
Supervised Learning Models

Supervised learning algorithms require labeled datasets to learn the relationship between input
features and known threat types. Common models include Support Vector Machines (SVM),
Random Forests (RF), and Deep Neural Networks (DNNs). These models have been successfully
applied in intrusion detection, with studies reporting high accuracy and recall rates on benchmark
datasets such as KDD99 and NSL-KDD [9]. Deep learning variants, such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), have also shown promise in detecting
complex attack patterns due to their ability to capture spatial and temporal correlations in data
[10].

Unsupervised Learning for Anomaly Detection

Unsupervised learning is particularly useful in detecting previously unseen threats or zero-day
attacks. Clustering algorithms like K-Means, DBSCAN, and dimensionality reduction methods
such as PCA and autoencoders are widely used for anomaly detection in cloud traffic [11]. These
methods identify deviations from learned “normal” behavior, which is advantageous in multi-
cloud systems where labeling data is often impractical.

Reinforcement Learning for Adaptive Security

Reinforcement learning (RL) allows an agent to interact with its environment and learn optimal
defense strategies based on feedback. This adaptive approach is well-suited for dynamically
changing threat landscapes in cloud environments. RL has been effectively used to optimize
firewall configurations, policy enforcement, and automated response mechanisms [12].

Comparative Model Analysis

Each ML technique presents trade-offs in terms of interpretability, computational overhead, and
scalability. Supervised models typically achieve high performance but are limited by the need for
labeled data. Unsupervised methods are less precise but offer flexibility in discovering unknown
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attacks. RL models provide dynamic adaptability but require careful reward function design and
substantial training time [13]. The integration of these techniques into a hybrid or ensemble
approach is gaining traction, where multiple models work collaboratively to improve detection
accuracy and reduce false positives in multi-cloud environments.

4. PROPOSED FRAMEWORK: FEDERATED ML FOR MULTI-CLOUD SECURITY

The increasing complexity of multi-cloud environments requires collaborative yet privacy-
preserving approaches to threat detection. To this end, | propose a Federated Machine Learning
(FML) framework that enables decentralized learning across multiple cloud platforms without
exposing sensitive data or violating compliance requirements.
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Figure 3. Federated ML for Multi-Cloud Security Framework
Architecture and Data Flow

In the proposed architecture, each participating cloud platform like AWS, Azure, GCP trains a
local ML model on its native telemetry, such as system logs, network flows, and API events. A
central orchestrator, often deployed in a secure enclave or managed using trusted execution
environments (TEES), aggregates model updates gradients or weights rather than raw data. These
updates are averaged using Federated Averaging (FedAvg) to update a global model, which is then
redistributed to participating nodes for further training cycles [14].

Data Privacy and Secure Model Aggregation

To protect sensitive information, the framework incorporates differential privacy mechanisms and
homomorphic encryption during aggregation. These techniques ensure that model contributions
from each cloud provider remain unlinkable to specific data points, satisfying regulations such as
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GDPR and HIPAA [15]. Secure multi-party computation (SMPC) further ensures confidentiality
during collaborative training [16].

Model Update Synchronization and Drift Management

One of the main challenges in federated settings is model drift due to non-identically distributed
(non-11D) data across cloud domains. The framework addresses this through adaptive learning rate
scheduling, asynchronous updates, and periodic local fine-tuning. This ensures consistency and
generalization across diverse cloud infrastructures [17].

Use Case Scenarios

Use cases include collaborative detection of distributed denial-of-service (DDoS) attacks, cloud
API misuse, and insider threats spanning multiple CSPs. By learning distributed threat patterns
across providers, the FML system can preemptively detect coordinated attacks that may otherwise
appear benign in isolated domains [18]. By leveraging FML, organizations can improve threat
visibility and model robustness without compromising sovereignty over their data. This paradigm
shift aligns with the emerging need for collaborative yet secure cloud security strategies.

5. IMPLEMENTATION AND EXPERIMENTAL SETUP

To validate the effectiveness of the proposed federated machine learning (FML) framework in
multi-cloud environments, | designed an experimental testbed comprising three cloud platforms
AWS, Microsoft Azure, and Google Cloud Platform (GCP). Each platform hosted virtual machines
simulating typical enterprise workloads with varying traffic profiles and threat patterns.

Datasets Used: Two benchmark datasets were selected to evaluate the system: UNSW-NB15 and
CICIDS2017. The UNSW-NB15 dataset provides a rich mix of modern attack scenarios including
Fuzzers, Analysis, and Backdoors [19], while CICIDS2017 includes both benign and malicious
traffic such as brute force attacks, DDoS, and infiltration activities [20]. These datasets were
distributed across the simulated cloud environments to replicate real-world non-1ID (non-
independent and identically distributed) data conditions.

Simulation of Multi-Cloud Environment: Each cloud provider hosted a local ML training node,
which processed its subset of telemetry logs and network packet captures. Federated Averaging
(FedAvg) was implemented using TensorFlow Federated (TFF) and PySyft frameworks. Model
aggregation occurred at a secure central orchestrator with differential privacy and secure
aggregation mechanisms enabled to preserve confidentiality.

Evaluation Metrics: | used standard performance metrics for intrusion detection, including
Accuracy, Precision, Recall, F1-score, and Detection Latency. | monitored the Communication
Overhead introduced by model synchronization and Resource Utilization on each node.

Baseline Comparison with Traditional IDS/IPS: For benchmarking purposes, | compared the
federated ML model with Snort and Suricata two widely-used signature-based intrusion detection
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systems. The FML approach consistently outperformed these traditional tools, achieving an
average detection accuracy of 94.2% and reducing false positives by 37% across distributed test
environments.

These results validate the applicability of federated learning in real-world multi-cloud
deployments, showcasing superior performance and data privacy preservation in contrast to
monolithic, rule-based detection systems.

6. RESULTS AND DISCUSSION

This section presents the evaluation results of the proposed Federated Machine Learning (FML)
framework across multiple cloud platforms, highlighting its performance, generalization
capabilities, and operational efficiency.

Detection Effectiveness across Cloud Platforms

The FML-based threat detection system achieved an average accuracy of 94.2% and an F1-score
of 0.91 across the three cloud environments. Detection rates were consistently high for known
attacks DDoS, brute force and significantly improved for previously unseen anomalies due to the
decentralized learning approach. Compared to traditional systems like Snort and Suricata, which
exhibited accuracies of 82.5% and 79.8% respectively, my approach demonstrates a measurable
enhancement in detection efficacy [21].

False Positive and False Negative Rates

A major advantage of ML-based detection is its reduced false positive rate (FPR). The FML system
achieved a 37% reduction in FPR and a 24% reduction in false negatives compared to baseline
IDS tools. This reduction is attributed to the adaptability of unsupervised and semi-supervised
components in identifying abnormal patterns across heterogeneous data sources [22].

Model Adaptability and Generalization

Federated learning enabled the system to generalize well across diverse traffic distributions and
threat types without requiring centralized data sharing. Adaptive fine-tuning mechanisms allowed
local models to learn platform-specific patterns, while the global model retained cross-domain
intelligence, ensuring robust and scalable performance [23].

These findings affirm that FML offers a practical and efficient threat detection solution in multi-
cloud ecosystems, balancing accuracy, privacy, and performance.

7. CHALLENGES AND LIMITATIONS

While the proposed Federated Machine Learning (FML) framework demonstrates promise for
securing multi-cloud environments, several challenges and limitations must be addressed to ensure
robust, scalable, and practical deployment.
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Data Heterogeneity and Labeling Issues: One of the primary challenges in federated learning
across multi-cloud platforms is data heterogeneity, where client nodes generate non-11D data due
to differing workloads, traffic patterns, and attack vectors. This heterogeneity can cause model
divergence and degrade global model performance [24]. The lack of labeled datasets in operational
environments complicates the application of supervised learning, necessitating reliance on
unsupervised or semi-supervised methods that may not capture all threat nuances.

Scalability in Real-World Deployments: Although FML reduces the need for centralized data
storage, the framework requires synchronization overhead during model aggregation and
redistribution. As the number of participating nodes increases, ensuring efficient communication,
computation, and version control of model updates becomes a scalability bottleneck [25].
Resource-constrained environments, such as edge devices in hybrid cloud architectures, may
struggle with model complexity and training latency.

Evasion Tactics by Adversaries: Advanced attackers can manipulate ML systems using
adversarial inputs or poisoning attacks that compromise the integrity of local model updates.
Federated learning is particularly vulnerable to model poisoning, where malicious clients inject
corrupted gradients to mislead the global model [26]. Detecting and mitigating such threats
remains an open research challenge.

Overcoming these challenges requires further research into secure aggregation protocols, adaptive
learning algorithms, and scalable orchestration strategies for large-scale, multi-tenant cloud
environments.

8. FUTURE WORK

While the proposed federated machine learning framework offers a promising direction for
scalable and privacy-preserving threat detection in multi-cloud environments, several avenues for
future research remain. One critical next step involves integrating the FML-based detection
framework with Zero Trust Architecture (ZTA) models to enforce dynamic, context-aware access
controls based on continuous authentication and real-time threat assessments. Generative models
such as Generative Adversarial Networks (GANs) and diffusion models could be employed to
simulate sophisticated attack vectors, creating synthetic datasets that help train robust threat
detection models capable of recognizing novel, adversarial behaviors in federated settings.
Additionally, future research should focus on explainable Al (XAIl) methods tailored for multi-
cloud security operations, enabling administrators to interpret model outputs, understand decision
boundaries, and comply with audit and accountability requirements. As organizations increasingly
adopt edge computing alongside multi-cloud deployments, future work must also adapt federated
threat detection frameworks to operate efficiently across cloud-edge hierarchies, including
lightweight model architectures, decentralized orchestration, and real-time local inference
capabilities suited for latency-sensitive applications.
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9. CONCLUSION

The growing adoption of multi-cloud architectures presents unique challenges to traditional
cybersecurity practices, particularly in the areas of threat detection and response. This paper
introduced a federated machine learning (FML) framework as a novel approach to enable
intelligent, privacy-preserving, and collaborative threat detection across distributed cloud
platforms. By leveraging supervised, unsupervised, and reinforcement learning techniques, the
proposed system demonstrated significant improvements in detection accuracy, false positive
reduction, and adaptability to heterogeneous cloud environments. Through experimental
validation using real-world datasets such as UNSW-NB15 and CICIDS2017, the FML framework
outperformed conventional intrusion detection systems and proved scalable with manageable
resource and communication overhead. Despite its advantages, the framework faces challenges
related to data heterogeneity, adversarial attacks, and regulatory compliance, which present
important directions for future research. Federated machine learning holds strong potential to
transform cybersecurity in multi-cloud ecosystems by bridging the gap between robust detection
and data privacy. Its successful integration into operational environments, especially in
conjunction with emerging paradigms like Zero Trust and edge-cloud architectures, will play a
crucial role in building resilient and intelligent cloud-native defense systems.
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