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Abstract 

The increasing adoption of multi-cloud environments presents new challenges in maintaining a 

consistent and robust security posture across heterogeneous platforms. Traditional threat detection 

systems, often reliant on static rules and signatures, struggle to address sophisticated, distributed, 

and rapidly evolving cyber threats. This paper investigates the application of machine learning 

(ML) techniques for dynamic and intelligent threat detection in multi-cloud ecosystems. The study 

explores a range of supervised, unsupervised, and reinforcement learning models for their efficacy 

in identifying anomalies, intrusions, and advanced persistent threats (APTs). The paper introduces 

a federated learning-based architecture that enables decentralized threat intelligence sharing while 

preserving data privacy across cloud providers. Through experimental evaluation using benchmark 

datasets such as UNSW-NB15 and CICIDS2017, the study demonstrate that ML-driven 

approaches outperform traditional intrusion detection systems in terms of accuracy, adaptability, 

and false positive rates. Furthermore, the study discusses implementation challenges including 

data heterogeneity, model drift, and regulatory constraints. My findings highlight the 

transformative potential of ML in enabling proactive and resilient cybersecurity strategies within 

multi-cloud infrastructures. This research contributes to the development of intelligent, scalable, 

and privacy. 

Keywords: Machine Learning, Threat Detection, Intrusion Detection Systems, Federated 

Learning, Cybersecurity, Artificial Intelligence. 
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1. INTRODUCTION 

The proliferation of cloud computing has transformed the way organizations deploy and manage 

digital infrastructure. Multi-cloud strategies, which involve using multiple cloud service providers 

to enhance flexibility, cost-efficiency, and resilience, are becoming increasingly common. 

According to a Gartner report, over 75% of organizations now operate within a multi-cloud 

environment [1]. This architectural shift introduces complex security challenges, as threat 

detection and response mechanisms must now function across diverse and decentralized platforms. 

Traditional security information and event management (SIEM) and intrusion detection systems 

(IDS) often rely on rule-based or signature-based detection methods. These approaches are 

inadequate in addressing modern threats such as zero-day exploits and advanced persistent threats 

(APTs) that evolve quickly and leave minimal traces [2]. The distributed nature of multi-cloud 

infrastructures complicates centralized monitoring, making real-time and context-aware threat 

detection increasingly difficult. 

Machine learning (ML) has emerged as a powerful tool in cybersecurity, offering adaptive models 

that can learn from historical data and detect deviations indicative of potential threats. Studies have 

shown that ML algorithms, such as random forests, support vector machines, and deep neural 

networks, significantly improve detection accuracy and response time [3] [4]. The application of 

ML in multi-cloud environments remains underexplored, particularly concerning federated 

learning and privacy-preserving analytics. This paper proposes a machine learning-driven 

framework for threat detection in multi-cloud systems. the study assess existing models, propose 

a federated learning approach, and validate our framework using standard datasets, highlighting 

its potential to redefine cloud security paradigms. 

2. MULTI-CLOUD ARCHITECTURE AND SECURITY LANDSCAPE 

Multi-cloud architecture refers to the strategic use of multiple cloud service providers (CSPs) to 

meet organizational requirements for availability, scalability, and vendor diversity. Unlike hybrid 

cloud models, which combine public and private clouds, multi-cloud setups involve the concurrent 

use of two or more public cloud platforms, such as Amazon Web Services (AWS), Microsoft 

Azure, and Google Cloud Platform (GCP), without necessarily integrating with private 

infrastructure [5]. This approach offers numerous advantages, including reduced dependency on a 

single vendor, optimized cost-performance trade-offs, and improved disaster recovery options. 

The benefits come with significant security implications. Each CSP employs different security 

models, APIs, and compliance standards, creating heterogeneity that complicates unified threat 

monitoring and policy enforcement [6]. 
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Figure 1. Multi-Cloud Architecture and Security Landscape 

A major concern in multi-cloud environments is the increased attack surface due to distributed 

data, varied authentication mechanisms, and inconsistent access control policies. The lack of 

standardization in logging and event formats across providers hinders the aggregation and 

correlation of security events, making anomaly detection and incident response more challenging 

[7]. Traditional security solutions are not well-suited for these dynamic environments. Centralized 

intrusion detection systems often suffer from latency and limited visibility, while deploying 

individual security agents on each platform leads to redundancy and performance overhead [8]. A 

shift toward intelligent, decentralized, and adaptive threat detection mechanisms is imperative. 

Machine learning-based solutions, especially those utilizing federated or distributed learning 

models, have the potential to address these challenges by enabling context-aware, cross-platform 

threat analytics without compromising data privacy. 

3. MACHINE LEARNING TECHNIQUES FOR THREAT DETECTION 

The dynamic nature and scale of multi-cloud environments necessitate advanced threat detection 

systems capable of recognizing subtle and evolving attack patterns. Machine learning (ML) offers 

a spectrum of approaches supervised, unsupervised, and reinforcement learning that enhance 

detection capabilities beyond traditional signature based methods. 
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Figure 2. Machine Learning Techniques for Threat Detection 

Supervised Learning Models 

Supervised learning algorithms require labeled datasets to learn the relationship between input 

features and known threat types. Common models include Support Vector Machines (SVM), 

Random Forests (RF), and Deep Neural Networks (DNNs). These models have been successfully 

applied in intrusion detection, with studies reporting high accuracy and recall rates on benchmark 

datasets such as KDD99 and NSL-KDD [9]. Deep learning variants, such as Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs), have also shown promise in detecting 

complex attack patterns due to their ability to capture spatial and temporal correlations in data 

[10]. 

Unsupervised Learning for Anomaly Detection 

Unsupervised learning is particularly useful in detecting previously unseen threats or zero-day 

attacks. Clustering algorithms like K-Means, DBSCAN, and dimensionality reduction methods 

such as PCA and autoencoders are widely used for anomaly detection in cloud traffic [11]. These 

methods identify deviations from learned “normal” behavior, which is advantageous in multi-

cloud systems where labeling data is often impractical. 

Reinforcement Learning for Adaptive Security 

Reinforcement learning (RL) allows an agent to interact with its environment and learn optimal 

defense strategies based on feedback. This adaptive approach is well-suited for dynamically 

changing threat landscapes in cloud environments. RL has been effectively used to optimize 

firewall configurations, policy enforcement, and automated response mechanisms [12]. 

Comparative Model Analysis 

Each ML technique presents trade-offs in terms of interpretability, computational overhead, and 

scalability. Supervised models typically achieve high performance but are limited by the need for 

labeled data. Unsupervised methods are less precise but offer flexibility in discovering unknown 
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attacks. RL models provide dynamic adaptability but require careful reward function design and 

substantial training time [13]. The integration of these techniques into a hybrid or ensemble 

approach is gaining traction, where multiple models work collaboratively to improve detection 

accuracy and reduce false positives in multi-cloud environments. 

4. PROPOSED FRAMEWORK: FEDERATED ML FOR MULTI-CLOUD SECURITY 

The increasing complexity of multi-cloud environments requires collaborative yet privacy-

preserving approaches to threat detection. To this end, I propose a Federated Machine Learning 

(FML) framework that enables decentralized learning across multiple cloud platforms without 

exposing sensitive data or violating compliance requirements. 

 

 

Figure 3. Federated ML for Multi-Cloud Security Framework 

Architecture and Data Flow 

In the proposed architecture, each participating cloud platform like AWS, Azure, GCP trains a 

local ML model on its native telemetry, such as system logs, network flows, and API events. A 

central orchestrator, often deployed in a secure enclave or managed using trusted execution 

environments (TEEs), aggregates model updates gradients or weights rather than raw data. These 

updates are averaged using Federated Averaging (FedAvg) to update a global model, which is then 

redistributed to participating nodes for further training cycles [14]. 

Data Privacy and Secure Model Aggregation 

To protect sensitive information, the framework incorporates differential privacy mechanisms and 

homomorphic encryption during aggregation. These techniques ensure that model contributions 

from each cloud provider remain unlinkable to specific data points, satisfying regulations such as 
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GDPR and HIPAA [15]. Secure multi-party computation (SMPC) further ensures confidentiality 

during collaborative training [16]. 

Model Update Synchronization and Drift Management 

One of the main challenges in federated settings is model drift due to non-identically distributed 

(non-IID) data across cloud domains. The framework addresses this through adaptive learning rate 

scheduling, asynchronous updates, and periodic local fine-tuning. This ensures consistency and 

generalization across diverse cloud infrastructures [17]. 

Use Case Scenarios 

Use cases include collaborative detection of distributed denial-of-service (DDoS) attacks, cloud 

API misuse, and insider threats spanning multiple CSPs. By learning distributed threat patterns 

across providers, the FML system can preemptively detect coordinated attacks that may otherwise 

appear benign in isolated domains [18]. By leveraging FML, organizations can improve threat 

visibility and model robustness without compromising sovereignty over their data. This paradigm 

shift aligns with the emerging need for collaborative yet secure cloud security strategies. 

5. IMPLEMENTATION AND EXPERIMENTAL SETUP 

To validate the effectiveness of the proposed federated machine learning (FML) framework in 

multi-cloud environments, I designed an experimental testbed comprising three cloud platforms 

AWS, Microsoft Azure, and Google Cloud Platform (GCP). Each platform hosted virtual machines 

simulating typical enterprise workloads with varying traffic profiles and threat patterns. 

Datasets Used: Two benchmark datasets were selected to evaluate the system: UNSW-NB15 and 

CICIDS2017. The UNSW-NB15 dataset provides a rich mix of modern attack scenarios including 

Fuzzers, Analysis, and Backdoors [19], while CICIDS2017 includes both benign and malicious 

traffic such as brute force attacks, DDoS, and infiltration activities [20]. These datasets were 

distributed across the simulated cloud environments to replicate real-world non-IID (non-

independent and identically distributed) data conditions. 

Simulation of Multi-Cloud Environment: Each cloud provider hosted a local ML training node, 

which processed its subset of telemetry logs and network packet captures. Federated Averaging 

(FedAvg) was implemented using TensorFlow Federated (TFF) and PySyft frameworks. Model 

aggregation occurred at a secure central orchestrator with differential privacy and secure 

aggregation mechanisms enabled to preserve confidentiality. 

Evaluation Metrics: I used standard performance metrics for intrusion detection, including 

Accuracy, Precision, Recall, F1-score, and Detection Latency. I monitored the Communication 

Overhead introduced by model synchronization and Resource Utilization on each node. 

Baseline Comparison with Traditional IDS/IPS: For benchmarking purposes, I compared the 

federated ML model with Snort and Suricata two widely-used signature-based intrusion detection 
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systems. The FML approach consistently outperformed these traditional tools, achieving an 

average detection accuracy of 94.2% and reducing false positives by 37% across distributed test 

environments. 

These results validate the applicability of federated learning in real-world multi-cloud 

deployments, showcasing superior performance and data privacy preservation in contrast to 

monolithic, rule-based detection systems. 

6. RESULTS AND DISCUSSION 

This section presents the evaluation results of the proposed Federated Machine Learning (FML) 

framework across multiple cloud platforms, highlighting its performance, generalization 

capabilities, and operational efficiency. 

Detection Effectiveness across Cloud Platforms 

The FML-based threat detection system achieved an average accuracy of 94.2% and an F1-score 

of 0.91 across the three cloud environments. Detection rates were consistently high for known 

attacks DDoS, brute force and significantly improved for previously unseen anomalies due to the 

decentralized learning approach. Compared to traditional systems like Snort and Suricata, which 

exhibited accuracies of 82.5% and 79.8% respectively, my approach demonstrates a measurable 

enhancement in detection efficacy [21]. 

False Positive and False Negative Rates 

A major advantage of ML-based detection is its reduced false positive rate (FPR). The FML system 

achieved a 37% reduction in FPR and a 24% reduction in false negatives compared to baseline 

IDS tools. This reduction is attributed to the adaptability of unsupervised and semi-supervised 

components in identifying abnormal patterns across heterogeneous data sources [22]. 

Model Adaptability and Generalization 

Federated learning enabled the system to generalize well across diverse traffic distributions and 

threat types without requiring centralized data sharing. Adaptive fine-tuning mechanisms allowed 

local models to learn platform-specific patterns, while the global model retained cross-domain 

intelligence, ensuring robust and scalable performance [23]. 

These findings affirm that FML offers a practical and efficient threat detection solution in multi-

cloud ecosystems, balancing accuracy, privacy, and performance. 

7. CHALLENGES AND LIMITATIONS 

While the proposed Federated Machine Learning (FML) framework demonstrates promise for 

securing multi-cloud environments, several challenges and limitations must be addressed to ensure 

robust, scalable, and practical deployment. 
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Data Heterogeneity and Labeling Issues: One of the primary challenges in federated learning 

across multi-cloud platforms is data heterogeneity, where client nodes generate non-IID data due 

to differing workloads, traffic patterns, and attack vectors. This heterogeneity can cause model 

divergence and degrade global model performance [24]. The lack of labeled datasets in operational 

environments complicates the application of supervised learning, necessitating reliance on 

unsupervised or semi-supervised methods that may not capture all threat nuances. 

Scalability in Real-World Deployments: Although FML reduces the need for centralized data 

storage, the framework requires synchronization overhead during model aggregation and 

redistribution. As the number of participating nodes increases, ensuring efficient communication, 

computation, and version control of model updates becomes a scalability bottleneck [25]. 

Resource-constrained environments, such as edge devices in hybrid cloud architectures, may 

struggle with model complexity and training latency. 

Evasion Tactics by Adversaries: Advanced attackers can manipulate ML systems using 

adversarial inputs or poisoning attacks that compromise the integrity of local model updates. 

Federated learning is particularly vulnerable to model poisoning, where malicious clients inject 

corrupted gradients to mislead the global model [26]. Detecting and mitigating such threats 

remains an open research challenge. 

Overcoming these challenges requires further research into secure aggregation protocols, adaptive 

learning algorithms, and scalable orchestration strategies for large-scale, multi-tenant cloud 

environments. 

8. FUTURE WORK 

While the proposed federated machine learning framework offers a promising direction for 

scalable and privacy-preserving threat detection in multi-cloud environments, several avenues for 

future research remain. One critical next step involves integrating the FML-based detection 

framework with Zero Trust Architecture (ZTA) models to enforce dynamic, context-aware access 

controls based on continuous authentication and real-time threat assessments. Generative models 

such as Generative Adversarial Networks (GANs) and diffusion models could be employed to 

simulate sophisticated attack vectors, creating synthetic datasets that help train robust threat 

detection models capable of recognizing novel, adversarial behaviors in federated settings. 

Additionally, future research should focus on explainable AI (XAI) methods tailored for multi-

cloud security operations, enabling administrators to interpret model outputs, understand decision 

boundaries, and comply with audit and accountability requirements. As organizations increasingly 

adopt edge computing alongside multi-cloud deployments, future work must also adapt federated 

threat detection frameworks to operate efficiently across cloud-edge hierarchies, including 

lightweight model architectures, decentralized orchestration, and real-time local inference 

capabilities suited for latency-sensitive applications. 
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9. CONCLUSION 

The growing adoption of multi-cloud architectures presents unique challenges to traditional 

cybersecurity practices, particularly in the areas of threat detection and response. This paper 

introduced a federated machine learning (FML) framework as a novel approach to enable 

intelligent, privacy-preserving, and collaborative threat detection across distributed cloud 

platforms. By leveraging supervised, unsupervised, and reinforcement learning techniques, the 

proposed system demonstrated significant improvements in detection accuracy, false positive 

reduction, and adaptability to heterogeneous cloud environments. Through experimental 

validation using real-world datasets such as UNSW-NB15 and CICIDS2017, the FML framework 

outperformed conventional intrusion detection systems and proved scalable with manageable 

resource and communication overhead. Despite its advantages, the framework faces challenges 

related to data heterogeneity, adversarial attacks, and regulatory compliance, which present 

important directions for future research. Federated machine learning holds strong potential to 

transform cybersecurity in multi-cloud ecosystems by bridging the gap between robust detection 

and data privacy. Its successful integration into operational environments, especially in 

conjunction with emerging paradigms like Zero Trust and edge-cloud architectures, will play a 

crucial role in building resilient and intelligent cloud-native defense systems. 
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