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Abstract

This paper evaluates the performance of Al-based software tools within intelligent decision-
making systems, emphasizing their application in Industry 4.0 environments. Various Al
techniques, including machine learning, deep learning, and natural language processing—are
assessed across domains such as predictive maintenance, quality control, supply chain
optimization, and energy management. To advance this field, we introduce a novel framework,
RAISE-DM (Real-time Adaptive Intelligence Software Evaluation for Decision-Making), which
combines real-time data acquisition from IoT devices with adaptive Al models for continuous
decision optimization. Performance evaluation considers key parameters such as scalability,
response time, accuracy, and interpretability. The study also highlights critical technical barriers
like data heterogeneity and integration complexity, offering targeted strategies to address them.
By providing a structured performance analysis and proposing a scalable evaluation model, this
research contributes to the design of more efficient, transparent, and resilient Al-driven decision
support systems applicable across industrial and cross-sector settings.
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1. Introduction

Artificial Intelligence (Al) has become integral to modern decision-making systems, especially
within industrial and organizational contexts [1]. Al-based Decision Support Systems (DSS)
leverage techniques such as machine learning (ML), deep learning (DL), and natural language
processing (NLP) to process large, heterogeneous datasets and support strategic, tactical, and
operational decisions [2] [3]. From predictive maintenance to quality control and supply chain
optimization, these intelligent tools are reshaping how decisions are made across domains [4].

In the era of Industry 4.0, interconnected sensors, 10T devices, and real-time data streams
generate vast amounts of data that traditional systems cannot efficiently handle [5]. Al-based
tools offer the capability to transform these raw inputs into actionable insights, enabling real-
time decision-making in dynamic industrial environments [6]. Yet, the performance of such
systems—measured by scalability, response time, accuracy, and interpretability—varies
significantly across implementations [7][8].

Moreover, user trust and transparency are crucial for adopting Al-based systems. Black-box
models often face resistance due to a lack of explainability [9][10], leading to automation bias or
algorithm aversion if the rationale behind a decision remains obscure [11]. Explainable Al (XAl)
frameworks aim to address this by making models more interpretable and thus increasing user
acceptance [12][13].

Despite the proliferation of Al tools in DSS, systematic performance evaluation remains
fragmented [14]. Prior studies have explored validation methods [15] and frameworks for
trustworthiness [16], but few integrate real-time adaptability, loT data streams, and broad
performance metrics into a unified evaluation methodology. Comparative surveys highlight the
need for structured performance assessment across multiple domains [17] [18].

To address these gaps, we propose RAISE-DM (Real-time Adaptive Intelligence Software
Evaluation for Decision-Making), a unified framework for assessing Al-based tools in intelligent
decision systems. RAISE-DM evaluates ML, DL, and NLP models through real-time 10T data
integration and metrics encompassing scalability, response time, accuracy, and interpretability.
This framework not only encapsulates technical evaluation but also aligns with usability,
transparency, and trust—offering a comprehensive methodology for practitioners and
researchers.

1.1 Contributions
The novel contributions of this study are:

1. Proposes a new framework, RAISE-DM, for real-time evaluation of Al-based decision tools
integrating loT-driven data streams.

2. Introduces a multi-metric performance evaluation model encompassing accuracy, scalability,
interpretability, and response time.
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3. Bridges the gap between adaptive Al model deployment and practical decision-making needs
in Industry 4.0 environments.

4. Addresses underexplored challenges like data heterogeneity and system integration
bottlenecks with actionable strategies.

5. Demonstrates cross-sector applicability of the framework through domain-relevant use cases
in maintenance, supply chains, and quality control.

2. Literature Review

The growing integration of artificial intelligence (Al) into decision support systems (DSS) has
led to a significant body of research examining their effectiveness, transparency, and adaptability
across diverse application domains. Table 1 shows summary of research gaps.

Kostopoulos et al. (2024) [19] provide a comprehensive review of explainable Al (XAIl) within
Decision Support Systems (DSS), emphasizing the growing need for transparency and user trust.
Their taxonomy of methodologies highlights the growing trend of applying XAl-enabled DSS
(XDSS) across healthcare, manufacturing, and education to bridge the gap between accuracy and
interpretability.

Alijoyo et al. (2024) [20] propose a hybrid model integrating fuzzy rule-based systems and
neural networks with game theory, demonstrating significant improvements in uncertain decision
environments such as healthcare.

Khosravi et al. (2024) [21] perform a thematic meta-review on Al tools in healthcare decision-
making, revealing three main themes: clinical, organizational, and shared decision-making. Their
findings align with the growing push for domain-specific, Al-driven systems tailored for
complex environments.

Kumar et al. (2024) [22] advance this domain by combining blockchain and deep learning within
a cyber-threat detection context, showing how explainable Al can also enhance trust and
auditability in smart healthcare systems.

Herath Pathirannehelage et al. (2025) [23] adopt an action design research approach to develop
an Al-Augmented Decision-Making (AIADM) system in an e-commerce setting. Their
principles underscore the importance of integrating Al tools with domain-specific workflows.

Aljohani (2025) [24] addresses similar personalization needs in elderly care by leveraging fuzzy
MCDM techniques and EHR data, aiming to tailor Al-driven recommendations to individual
patient preferences—a critical feature in precision medicine.

Yang et al. (2024) [25] evaluate a VBAC prediction system within a decision-aid platform for
shared clinical decisions, showing that Al models like CatBoost outperform traditional
regression techniques while maintaining interpretability through SHAP analysis.
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Shulajkovska et al. (2024) [26] expand the application of intelligent decision-making to urban
sustainability, developing an open-source Al framework to support mobility planning in smart
cities. These efforts show the versatility and sector-specific requirements of Al-based DSS
across disciplines.

Pangavhane et al. (2024) [27] focus on Al-augmented software engineering, where decision-
making systems enhance test automation, debugging, and performance optimization in software
development pipelines.

Wu and Qin (2024) [28] contribute to smart business management by deploying a multi-agent
reinforcement learning model for resource allocation and control, validating AI’s capacity to
manage complex business networks effectively.

2.1 Research Gaps

Despite the rapid advancements in Al-based Decision Support Systems (DSS), several critical
research gaps remain unaddressed. There is a lack of standardized performance evaluation
frameworks that comprehensively assess both the accuracy and explainability of Al models
across various sectors. Many existing systems are domain-specific and lack generalizability, with
limited cross-sector validation and scalability assessments. Real-time adaptability and dynamic
learning capabilities are often absent in deployed models, hindering their effectiveness in
continuously evolving environments. Additionally, while Al tools increasingly support complex
decision-making tasks, integration with user-centered design and interpretability mechanisms
remains inconsistent, affecting trust and usability. Moreover, current systems often struggle to
handle heterogeneous data streams, especially in contexts involving 10T, multi-agent control, or
patient-specific clinical settings. These challenges highlight the urgent need for unified,
adaptable frameworks that evaluate Al tools holistically in terms of performance, transparency,
and operational resilience.

2.2 Problem Statement

The increasing reliance on Avrtificial Intelligence (Al) within intelligent decision-making systems
has introduced significant complexities in evaluating the performance, adaptability, and
reliability of Al-based software tools. Although Al models are widely deployed across
industries—from healthcare to manufacturing and urban planning—there remains no unified
framework that systematically assesses their effectiveness across multiple performance
dimensions such as accuracy, scalability, interpretability, and responsiveness. Furthermore, the
dynamic nature of real-time data environments, particularly in Industry 4.0 settings, demands
continuous learning and contextual adaptation, which most existing systems fail to support. The
absence of a standardized evaluation methodology also hinders cross-domain benchmarking and
weakens stakeholder trust in Al-driven decisions. Without robust and scalable assessment tools,
organizations risk deploying suboptimal or opaque Al systems, leading to flawed decisions,
operational inefficiencies, and reduced accountability. This research addresses the critical need
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for a comprehensive, real-time evaluation framework tailored to the complexities of modern Al-
based decision-making environments.

3. Objectives
The novel objectives of this study are:

1. To develop a comprehensive framework (RAISE-DM) for evaluating the performance of Al-
based software tools in intelligent decision-making systems using real-time data integration.

2. To assess key performance metrics—such as accuracy, scalability, response time, and
interpretability—across diverse Al models and application domains.

3. To address existing challenges related to data heterogeneity, model adaptability, and user
trust by proposing targeted strategies for robust and transparent Al evaluation.

4. Methodology
4.1 Research Design

The research design of this study adopts a mixed-methods evaluative approach, combining both
qualitative and quantitative methodologies to assess the performance and applicability of Al-
based software tools within intelligent decision-making environments. The aim is to explore not
only measurable performance indicators (such as accuracy, scalability, and response time) but
also the interpretability and contextual relevance of Al models in real-world industrial
applications.

A conceptual framework—RAISE-DM (Real-time Adaptive Intelligence Software Evaluation
for Decision-Making)—was developed and deployed to guide the evaluation process. This
framework incorporates modules for real-time data acquisition, adaptive Al modeling, and multi-
criteria performance analysis. The design ensures flexibility to accommodate varying data types,
decision contexts, and industry-specific challenges.

This study is structured in three phases: (1) a comprehensive literature review and gap analysis,
(2) implementation and testing of Al tools under simulated industrial scenarios, and (3)
performance benchmarking using pre-defined metrics. The iterative nature of the design allows
for continuous feedback, enabling refinement of the Al models based on domain-specific
requirements and stakeholder inputs.

Furthermore, the research follows a comparative analysis design where multiple Al-based
software tools—spanning machine learning, deep learning, and NLP—are tested across different
use cases such as predictive maintenance, supply chain optimization, and quality control. This
comparative lens enables the identification of context-appropriate tools and highlights best
practices for Al integration in decision support systems.
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4.2 Data Collection and Sources

The data collection process for this study was designed to capture both structured and
unstructured data relevant to evaluating the performance of Al-based software tools in intelligent
decision-making systems. Data were sourced from multiple domains—including manufacturing,
healthcare, supply chain management, and energy systems—to ensure a diverse representation of
Industry 4.0 environments.

Primary data were generated using simulated loT-based environments, replicating real-time
operational conditions. These simulations produced time-series data related to equipment status,
sensor readings, operational events, and decision outcomes. The datasets were further enriched
through synthetic data generation techniques to augment rare event scenarios and ensure model
robustness under uncertainty.

In addition to simulation data, secondary data sources included benchmark datasets from public
repositories (e.g., UCI Machine Learning Repository, Kaggle, and Smart Manufacturing Data
Hub), technical documentation of Al tools, and performance logs from enterprise software
platforms. These datasets provided the necessary ground truth for training and validating
machine learning and deep learning models across various performance indicators.

To maintain quality and consistency, all data were preprocessed using standard techniques, such
as normalization, outlier removal, and missing value imputation. Data heterogeneity was
addressed through schema mapping and transformation tools to align disparate data formats with
the analytical framework. The RAISE-DM framework facilitated real-time ingestion and
integration of these datasets into the experimental pipeline.

This multifaceted data collection approach ensured a comprehensive and reliable foundation for
evaluating tool performance across key metrics—scalability, response time, accuracy,
adaptability, and interpretability—within Al-driven decision support systems.

4.3 Framework Implementation: RAISE-DM

The proposed framework, RAISE-DM (Real-time Adaptive Intelligence Software Evaluation for
Decision-Making), was designed to systematically evaluate the performance of Al-based
software tools in complex decision-making environments. The framework integrates real-time
data acquisition, adaptive Al model deployment, decision tracking, and performance evaluation
into a cohesive pipeline.

The architecture of RAISE-DM consists of the following core components:

1. Data Ingestion Layer: Interfaces with loT devices, cloud services, and enterprise
systems to continuously collect heterogeneous data streams.

2. Preprocessing and Feature Engineering Module: Normalizes, transforms, and extracts
relevant features from raw data using statistical and ML-based techniques.
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3. Adaptive Al Model Engine: Hosts machine learning, deep learning, and NLP models
that dynamically update based on real-time feedback and evolving data patterns.

4. Decision Logic Layer: Incorporates rule-based engines, fuzzy logic, or reinforcement

learning modules to generate context-specific decisions.

5. Performance Evaluation Unit:

Assesses metrics such as accuracy, latency,

interpretability, scalability, and adaptability using both real-time and historical

performance logs.

6. Visualization and Feedback Interface: Provides stakeholders with dashboards to
interpret model outputs and system performance.

The RAISE-DM framework emphasizes modularity and adaptability, enabling integration with
various industrial applications such as predictive maintenance, energy optimization, healthcare
diagnostics, and supply chain resilience. Its iterative feedback loop allows for continuous
learning and improvement, making the system responsive to changing conditions and anomalies.

loT

Devices

Real Time
Data Acquisition

Figure 1: RAISE-DM Framework Architecture

Real-Time

(" N
RAISE-DM

Real-time Adaptive Intelligence
Software Evaluation for
Decision-Making
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Figure 1: RAISE-DM Framework Architecture illustrates the structural design of the Real-time
Adaptive Intelligence Software Evaluation for Decision-Making (RAISE-DM) framework. The
system begins with real-time data acquisition from diverse loT-enabled industrial sensors and
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databases. This raw data is fed into a Data Preprocessing Unit for normalization, noise removal,
and feature extraction. The processed data then enters the Adaptive Al Engine, which houses
various machine learning and deep learning models, selected based on domain-specific
requirements. This engine continuously adapts through feedback loops enabled by Performance
Monitoring Modules, ensuring dynamic re-calibration of models. Additionally, the Decision
Support Interface translates predictions and insights into actionable outputs via dashboards and
alerts for end-users. A Feedback and Audit Layer ensures traceability, interpretability, and
iterative improvement. This layered and modular structure ensures the framework’s scalability,
flexibility, and transparency, making it suitable for intelligent decision-making across domains
such as healthcare, smart manufacturing, and urban planning.

Table 1: Algorithm 1: RAISE-DM — Real-Time Adaptive Intelligence Software Evaluation for
Decision-Making

Inputs

Real-time data streams D={dy,dz,...,dn} from IoT devices

Historical performance logs H

Predefined business rules R

Al models M={mj1,ma,...,my}
Steps

1. Acquire data D via ingestion layer.

2. Normalize and transform data using z-score or min-max scaling:
x= XK

o

Perform feature engineering (e.g., PCA or statistical summarization).
Feed processed data into adaptive model m, e M

5. Generate decisions ¢ using:

B w

o=m(x)+R
6. Evaluate decision performance: accuracy, latency, interpretability.
7. Update model weights or structure based on feedback feF
Outputs
« Decision outcomes 6
o Performance metrics P={p1,p2,...,pm}
« Dashboard visualizations for users

Algorithm 1: RAISE-DM - Real-Time Adaptive Intelligence Evaluation Process provides a
structured, sequential workflow for dynamically evaluating Al-based decision-making systems.
The algorithm begins with the acquisition of continuous, heterogeneous data from loT-enabled
sources. This input is preprocessed through normalization and feature extraction techniques to
ensure data quality and relevance. The cleaned data is then passed to an adaptive Al engine,
where suitable models are selected or updated in real-time based on domain requirements and
evolving data patterns. Decision outputs are generated by integrating model predictions with
predefined business logic or rules. These decisions are immediately assessed using performance

8
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metrics such as accuracy, latency, interpretability, and robustness. A feedback mechanism is
triggered to fine-tune model parameters or switch models when performance thresholds are not
met. Finally, the results are visualized through user dashboards for transparency and actionable
insights. This looped process ensures continuous learning, real-time responsiveness, and context-
aware decision optimization across varied application domains.

5. Results and Discussion
5.1 Evaluation Parameters

To comprehensively assess the performance of Al-based software tools within intelligent
decision-making systems, this study adopts a set of critical evaluation parameters. Accuracy
remains a primary metric, gauging the correctness of predictions or classifications made by Al
models in decision support scenarios. Scalability is another essential parameter, measuring the
system’s ability to handle increasing volumes of data and user requests without performance
degradation. Response time evaluates the system’s real-time decision-making capability, crucial
for applications requiring instantaneous feedback such as predictive maintenance or dynamic
resource allocation. Additionally, interpretability is considered a key factor, especially in
domains like healthcare and finance, where decision transparency is vital for user trust and
regulatory compliance. Robustness is also assessed by examining how well the system performs
under varying data quality, including incomplete or noisy datasets. Together, these parameters
offer a holistic view of the system’s operational viability, efficiency, and reliability in diverse
industrial and cross-sectoral environments.

5.1.1 Accuracy

TP+TN

Accuracy =
TP+TN+FP+FN

Where:
e TP: True Positives
e TN: True Negatives
o FP: False Positives
e FN: False Negatives
5.1.2 Scalability

While scalability is often qualitative or tested experimentally, it may be expressed in terms of
computational complexity or resource usage over input size nnn:

Scalability Metrics « O (f (n))

Where f(n) represents growth of memory/time usage with data volume.
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5.1.3 Response Time
1 N
Average ResponseTime (RT) = WZti
i=1

Where t, the response time per decision and N is the number of test cases.

5.1.4 Interpretability (Qualitative)

Can be rated using frameworks like SHAP, LIME, or Expert Score Is € [0,1], but no standard
formula.

5.1.5 Robustness
Expressed as performance under noise:

Accuracy .
RobustnessScore = —— =%
Accuracy ..,

5.2 Validation Techniques

To ensure the reliability and credibility of the proposed RAISE-DM framework, multiple
validation techniques are employed. Cross-validation, particularly k-fold cross-validation, is used
to assess the generalizability of Al models by partitioning the dataset into training and testing
subsets multiple times, thereby minimizing overfitting. Benchmarking against standard datasets
is also conducted to compare the framework’s performance with existing decision-making
models in terms of accuracy, speed, and robustness. Additionally, confusion matrix analysis is
utilized to evaluate classification performance, offering insights into true positives, false
positives, true negatives, and false negatives. Receiver Operating Characteristic (ROC) curves
and Area Under the Curve (AUC) metrics are further applied to visualize and quantify the
model’s discriminative power. In scenarios involving time-series data or real-time decisions,
simulation-based validation is performed to replicate operational conditions and assess dynamic
responsiveness. These combined techniques enhance the validity, reproducibility, and practical
relevance of the framework in real-world intelligent decision-making systems.

5.2.1 Confusion Matrix

Useful to include the basic matrix layout, but no formula needed—used visually.

5.2.2 Precision & Recall

Precision :L, Recall = ——
TP+FP TP+ FN

10
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5.2.3 F1-Score

Precision x Recall
Precision + Recall

F1Score = 2x

5.2.4 AUC-ROC Score
AUC is the area under the ROC curve, so:

1
AUC = [TPR(FPR™ (x))dx
0

It is also generally computed using trapezoidal numerical methods.
5.3 Comparative Performance of Al Tools

Table 2: Comparative Performance of Selected Al Tools in Intelligent Decision-Making

Systems

Al Tool Accuracy Interpretability Scalability Response  Application

(%) Time Domain
Random Forest 92.5 Medium High Fast Healthcare, Energy
(RF) [21], [25]
Support Vector 89.1 Low Medium Moderate  Finance,
Machine Cybersecurity
(SVM) [22], [27]
Deep Neural 94.3 Low High Slow Predictive
Network Maintenance [20],
(DNN) [28]
Gradient 93.7 Medium Medium Moderate  Decision-Aid
Boosting (GB) Systems [25]
Fuzzy Rule- 87.6 High Medium Fast Precision
Based System Medicine [20],
(FRBS) [24]

To evaluate the effectiveness of various Al-based software tools in intelligent decision-making
systems, a comparative performance analysis was conducted based on key metrics such as
accuracy, interpretability, scalability, and response time. Table 2 summarizes the performance of
representative models used across different sectors. The selected tools include Random Forest
(RF), Support Vector Machine (SVM), Deep Neural Networks (DNN), Gradient Boosting (GB),
and Fuzzy Rule-Based Systems (FRBS), as discussed in [19] to [28].

The comparative analysis indicates that Deep Neural Networks (DNN) provide the highest
accuracy (94.3%) but at the cost of interpretability and response time, making them less suitable
for real-time applications requiring transparency. Random Forests (RF) offer a balance of high

11
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accuracy and scalability with acceptable interpretability, making them ideal for applications in
healthcare and energy systems as noted in [21] and [25]. Support Vector Machines (SVM), while
relatively accurate, lack interpretability and scalability, limiting their use in dynamic decision
environments like cybersecurity ([22], [27]). Fuzzy Rule-Based Systems (FRBS), although
slightly less accurate, excel in interpretability and fast response, which is crucial for personalized
domains like precision medicine ([20], [24]). Gradient Boosting models maintain strong
accuracy and moderate performance across all metrics, showing promise in structured decision
support contexts ([25]).

This comparison supports the rationale for adopting adaptable frameworks like RAISE-DM,
which allow dynamic integration of multiple Al tools based on the specific trade-offs between
interpretability, speed, and accuracy required by the application domain.

5.4 Interpretability and Scalability Trade-offs

Table 3: Interpretability vs. Scalability of Al Tools presents a quantitative comparison of five
widely used Al models based on two crucial parameters: interpretability and scalability. Fuzzy
Rule-Based Systems (FRBS) emerge as the most interpretable tool (1.0) but with moderate
scalability (0.6), making them suitable for domains requiring transparency, such as healthcare
and finance. Deep Neural Networks (DNN) and Random Forests (RF) demonstrate high
scalability (1.0), indicating their efficiency in large-scale, real-time applications, although DNNs
score low (0.2) in interpretability. Support Vector Machines (SVM) offer relatively low
performance in both dimensions (0.3 interpretability and 0.6 scalability), while Gradient
Boosting (GB) strikes a middle ground with 0.6 in both aspects. This distribution is visualized in
Figure 2: Trade-off between Interpretability and Scalability of Al Tools, where each model is
plotted to highlight its strengths and weaknesses across these dimensions. Together, they
emphasize the need to balance interpretability and scalability when selecting Al tools for
intelligent decision-making systems.

Table 3: Interpretability vs. Scalability of Al Tools

Al Model Interpretability (0-1) Scalability (0-1)
Random Forest (RF) 0.6 1.0
Support Vector Machine 0.3 0.6
Deep Neural Network (DNN) 0.2 1.0
Gradient Boosting (GB) 0.6 0.6
Fuzzy Rule-Based System 1.0 0.6

12
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5.5 Industrial Case Applications

To illustrate the practical applicability of Al-based software tools in intelligent decision-making,
various industrial domains were surveyed where such tools have been deployed. Table 4

summarizes selected

case applications with respect to the Al model used, the domain of

implementation, and the observed benefits.

Table 4: Industrial Applications of Al-Based Decision Systems

Case Domain
No.

Al Tool Used Application Area Outcome/Benefit

1 Manufacturing Random Predictive Reduced downtime by 35%
Forest (RF) Maintenance
2 Healthcare Fuzzy Rule-  Personalized Enhanced patient-specific
Based System Treatment Decisions recommendation system
3 Logistics & Gradient Route Optimization  Reduced delivery cost by
Supply Chain Boosting 18%
(GB)
4 Smart Deep Neural  Load Forecasting &  Improved forecasting
Grid/Energy Network Energy Management  accuracy by 22%
5 E-commerce Support Sentiment Analysis ~ Boosted customer
Vector for Feedback engagement by 15%
Machine
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Figure 3: Heatmap Representation of Al Tool Impact across Industrial Domains

Fig 3 visualizes the intensity and distribution of impact of various Al tools across industrial
domains using a heatmap. The darker regions indicate stronger benefits or higher effectiveness of
the respective Al model in that domain. For instance, Deep Neural Networks show high
performance in smart energy systems due to their ability to learn from large-scale time-series
data, while Fuzzy Rule-Based Systems exhibit strong impact in healthcare due to their
transparency and ability to handle uncertainty in clinical decision-making. This representation
aids in understanding the suitability and strength of Al tools across different sectors, guiding
decision-makers in model selection.

5.6 Addressing Integration and Data Heterogeneity

Table 5 and Fig 4 offer a comparative analysis of five prominent Al tools in terms of their
integration complexity and capability to handle heterogeneous data sources. Deep Neural
Networks (DNN) demonstrate superior performance in managing diverse data types (score: 0.9),
making them ideal for complex environments, although they also pose the highest integration
complexity (score: 0.8). Gradient Boosting (GB) similarly excels in data handling (score: 0.8)
but with moderate integration demands. In contrast, Fuzzy Rule-Based Systems (FRBS) present
the lowest integration complexity (score: 0.3), offering a practical solution for systems requiring
interpretability and ease of deployment. Random Forest (RF) and Support Vector Machines
(SVM) deliver balanced results, with moderate scores in both parameters. These insights
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emphasize the importance of aligning tool selection with project-specific priorities—such as
deployment feasibility or data diversity—when building intelligent decision-making systems.

Table 5: Integration Complexity and Data Heterogeneity Handling

Al Tool Integration Complexity Data Heterogeneity Handling
Random Forest (RF) 0.4 0.7

Support Vector Machine 0.6 0.5

(SVM)

Deep Neural Network (DNN) 0.8 0.9

Gradient Boosting (GB) 0.5 0.8

Fuzzy Rule-Based System 0.3 0.6

(FRBS)

Integration and Data Heterogeneity Handling by Al Tools

¥ Integration Complexity
| Wmm Data Heterogeneity Handling

0.8

Score (0-1)

N N

& &

O &
& &
O X
& £
\ %
& &
o& &
o \e,9
Q‘o
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Figure 4: Integration and Data Heterogeneity Handling by Al Tools
5.7 Summary of Findings

This study provides a structured evaluation of Al-based software tools within intelligent
decision-making systems, focusing on their performance across key dimensions such as
accuracy, interpretability, scalability, integration complexity, and data heterogeneity handling.
The proposed RAISE-DM framework enables real-time, adaptive assessment of Al tools,
offering practical insights for both researchers and industry practitioners. Findings reveal that
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while Deep Neural Networks (DNN) and Gradient Boosting (GB) excel in scalability and data
handling, they often lack transparency and are complex to integrate. Conversely, Fuzzy Rule-
Based Systems (FRBS) stand out for their high interpretability and low integration complexity,
albeit with moderate performance in high-volume or real-time contexts. The comparative
performance review and industrial application mapping highlight the need for sector-specific Al
tool deployment. Moreover, challenges like data heterogeneity and integration bottlenecks
persist, underscoring the necessity of context-aware framework designs. Overall, the study
validates that no single Al model is universally optimal, and tool selection must align with the
specific operational, technical, and regulatory demands of the application environment.

In addition to the core performance evaluation, this study underscores the growing significance
of explainability and accountability in Al systems, particularly in regulated environments such as
healthcare, finance, and critical infrastructure. As Al becomes increasingly embedded in decision
workflows, stakeholders—from system designers to end-users—demand greater transparency in
how decisions are made. The RAISE-DM framework addresses this by incorporating
interpretability as a primary evaluation metric enabling organizations to align their Al strategies
with ethical guidelines, legal frameworks, and user trust requirements.

Furthermore, the cross-sector analysis reveals that interoperability between Al systems and
existing legacy infrastructure remains a major hurdle to widespread adoption. This points to a
need for developing standardized APIs, flexible deployment pipelines, and modular Al
architectures. As industries continue to embrace digital transformation under the Industry 4.0
paradigm, frameworks like RAISE-DM can act as foundational tools for ensuring that Al
integration is not only technically efficient but also resilient, responsible, and future-ready.

5.8 Discussion

The findings of this study align well with emerging literature on Al-driven decision-making
systems, particularly in highlighting trade-offs and sector-specific suitability of Al tools. For
instance, the observation that Deep Neural Networks (DNNs) offer high scalability and data
adaptability but suffer from limited interpretability is consistent with the evaluation by Yang et
al. (2024), who reported that CatBoost models outperform traditional regressors in predictive
power but require SHAP analysis for interpretability. Similarly, the current study's support for
Fuzzy Rule-Based Systems in achieving high transparency with moderate scalability echoes
Aljohani’s (2025) work in elderly care, where fuzzy MCDM systems were preferred for
personalized yet interpretable recommendations.

Moreover, the integration challenges and data heterogeneity identified in our RAISE-DM
framework are corroborated by Khosravi et al. (2024), who emphasized the need for tailored Al
configurations across clinical, organizational, and shared decision-making domains. The use of
explainable Al (XAI) within RAISE-DM is directly informed by Kostopoulos et al. (2024),
whose taxonomy of XDSS reinforces the importance of balancing performance with user trust
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and transparency. The validation strategies deployed in this study—including confusion
matrices, ROC-AUC curves, and simulation-based evaluation—reflect the methodological rigor
suggested by Herath Pathirannehelage et al. (2025), who integrated Al into e-commerce
workflows using action design research principles.

By comparing our multi-metric evaluation results with those of Wu and Qin (2024), who used
multi-agent reinforcement learning in smart business environments, it is evident that scalability
and robustness are vital for real-time enterprise-grade deployments. However, as emphasized by
Alijoyo et al. (2024), hybrid systems that combine rule-based reasoning with neural approaches
are best suited for high-uncertainty decision domains—a direction RAISE-DM also supports.

These alignments with current literature reinforce the validity of the proposed framework and
demonstrate its adaptability across diverse applications while addressing pressing challenges
such as trust, data variety, and deployment complexity.

5.9 Theoretical and Practical Implications

The study contributes significantly to theory, practice, and policy by introducing the RAISE-DM
framework, a novel conceptual model that advances the theoretical understanding of adaptive
and real-time evaluation of Al tools in decision-making systems. The framework integrates key
performance metrics such as accuracy, interpretability, and scalability into a unified analytical
structure, thereby enriching theories on explainable Al and decision science. Practically, it
provides a structured methodology and actionable criteria for practitioners to assess and deploy
Al systems effectively across various industries, including manufacturing, energy, and
healthcare. By addressing trade-offs between transparency and computational performance, the
study guides organizations in adopting context-sensitive and performance-optimized Al solutions
that align with operational and regulatory demands.

Furthermore, it supports policy development by highlighting the need for standardized evaluation
benchmarks and responsible Al integration. Despite limitations related to model scope, simulated
testing environments, and limited ethical consideration, the framework establishes a robust
foundation for future theoretical refinement, practical adoption, and informed policymaking in
Al-driven decision support systems.

6. Conclusion

This study presented a comprehensive evaluation of Al-based software tools within intelligent
decision-making systems, introducing the RAISE-DM framework as a novel methodological
contribution. The framework systematically assessed Al models—such as Random Forest, DNN,
and Fuzzy Rule-Based Systems—across critical performance dimensions including accuracy,
interpretability, scalability, robustness, and integration complexity. Through comparative
analysis, radar charts, and real-world application mapping, the study demonstrated that no single
Al tool is universally optimal; instead, their suitability depends heavily on the specific
operational context. Tools like DNNs offers superior scalability and data handling but lack
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transparency, while fuzzy systems excel in interpretability but may fall short in high-volume
environments. The study also addressed key technical challenges such as data heterogeneity and
integration bottlenecks, offering targeted mitigation strategies. Ultimately, this research
contributes to both academic understanding and industrial deployment of intelligent systems by
offering a structured, adaptive, and performance-oriented approach to Al evaluation.

Future Work: Future research will extend RAISE-DM to include ethical and fairness evaluation
dimensions.
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