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Abstract 

Purpose: The rapid expansion of cloud computing, edge intelligence, and big data environments 

has increased the scale and sophistication of cybersecurity threats. This study aims to develop an 

intelligent real-time cyber-threat detection framework based on deep learning within a cloud–

edge intelligence architecture, capable of effectively analyzing large-scale network traffic data. 

Methodology: The proposed framework employs the CICIDS2017 benchmark dataset and 

applies multiple stages of data preprocessing, feature engineering, and class distribution 

balancing. Several deep learning models—Convolutional Neural Networks (CNN), Long Short-

Term Memory (LSTM), and Gated Recurrent Unit (GRU)—are designed to capture spatial and 

temporal attack patterns. In addition, a hybrid CNN–LSTM–GRU model is developed to 

leverage the complementary strengths of these architectures. Model performance is evaluated 

using both binary and multiclass classification tasks. 

Findings: Experimental results demonstrate that the hybrid CNN–LSTM–GRU model 

outperforms individual models across all evaluation metrics. In binary classification, the hybrid 

model achieves an accuracy of 99.24%, surpassing CNN (99.10%), GRU (99.00%), and LSTM 

(98.95%). For multiclass classification, the hybrid model attains an accuracy of 93.35%, 

exceeding CNN (91.93%), GRU (92.36%), and LSTM (80.28%). These results confirm the 

framework’s strong capability for accurate and real-time cyber-threat detection. 

Unique Contribution to Theory, Practice and Policy:This study contributes theoretically by 

demonstrating the effectiveness of integrating spatial and temporal deep learning models for 

cyber-threat detection. Practically, it provides a high-performance cloud–edge intelligence 

framework suitable for real-time deployment in complex network environments. From a policy 

perspective, the findings support the adoption of advanced AI-driven security mechanisms to 

enhance national and organizational cybersecurity resilience in cloud and edge computing 

infrastructures. 
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1. Introduction 

The rapid expansion of cloud computing, edge intelligence, and big data technologies has 

fundamentally transformed modern digital infrastructures, enabling scalable computation, real-

time analytics, and ubiquitous connectivity across diverse application domains [1]. As much as 

these innovations are helpful in supporting smart cities, health care systems, automation of 

industries, and Internet of Things (IoT) networks and ecosystems, they have also dramatically 

widened the attack surface of cyber threats [2]. The large scale, speed, and amount of data at 

cloud and edge layers render standard security systems unsuitable in detecting and responding to 

advanced and novel cyber-attacks [3]. The consequence is an increase in demand of smart, 

dynamic and real time cyber security systems that are able to perform effectively at distributed 

computing environment. The various typical attacks or threats with respect to cybersecurity are 

depicted in figure 1. 

Conventional cyber security approaches, such as signature-based intrusion detection systems and 

rule-based firewalls, depend on predefined patterns and centralized processing [4]. These 

methods are effective against known attacks but fall short in recognizing zero-day exploits, 

advanced persistent threats, and polymorphic malware that are continuously changing their 

structure and behavior [5]. Additionally, the centralized nature of traditional cloud-based security 

solutions creates latency, bandwidth overheads, and single points of failure - all critical 

limitations for time-sensitive applications [6]. Edge computing has recently emerged as a 

paradigm that brings computation close to data sources; hence it can be an opportunity to 

overcome these constraints by facilitating faster response times while reducing the amount of 

data transmitted to centralized cloud servers [7]. 

 

Figure 1: Several common attacks or threats in the context of cybersecurity [8]. 

Cloud-edge intelligence, in this regard, has become one of the promising paradigms involving 

the combination of the high-computation capabilities of cloud platforms and the storage 

capabilities of cloud platforms with the low-latency and context-aware processing of edge 
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devices [9]. Cloud-edge systems can promote scaleable, robust, and real-time cyber security 

functions by allocating analytics and decision-making both to cloud and edge layers [10]. 

Nevertheless, the non-uniformity of devices, dynamic network profiles and persistent streams of 

data make it extremely difficult to establish effective threats detection mechanisms in such 

contexts. It is then necessary to apply intelligent automation and learning methods to handle this 

complexity and provide a high level of security over the entire infrastructure [11]. 

DL has already proven itself to be exceptionally effective at identifying intricate patterns in 

massive amounts of data, and has become a major facilitator to the next generation of cyber 

security solutions (Figure 2) [12]. DL models in contrast to the traditional approaches of machine 

learning are able to learn hierarchical representations automatically of raw data and are thus 

specifically suited to analyzing high dimensional, and unstructured cyber security data including 

network traffic, system logs and user behavioral patterns  [13,14].” Convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM)” 

networks have demonstrated the great potential in the detection of intrusions, malware, and 

anomalous activities at a high rate of accuracy  [15,16]. 

 

Figure 2: Deep Learning in Cyber-security [17]. 

DL integration into a cloud-edge intelligence framework supports real-time threat detection 

while satisfying latency and scalability requirements [18]. Edge nodes can conduct preliminary 

analysis and anomaly detection on local data streams for immediate responses to potential 

threats, whereas the cloud layer can manage more complex model training, global threat 

correlation, and long-term analysis using aggregated big data [19,20]. Such collaborative 

processing not only improves detection efficiency but also enhances system resilience by 

distributing security intelligence across multiple layers [21].  

The study presents an intelligent system of cloud-edge cyber security threat detection by using 

big data analytics which is proposed to be based on DL. The dataset used in the study is 

CICIDS2017 as it is used to simulate realistic attack and network traffic and subsequently, 
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extensive data preprocessing such as cleaning, encoding, feature engineering, scaling, and class 

imbalance management is conducted. The hybrid CNN-LSTM-GRU model is created to 

concurrently identify both spatial and temporal correlations of network flows. The edge node 

does low-latency anomaly detection and the cloud manages model training and analysis on a 

global level. The framework is tested with the standard performance measures in order to show 

accurate scalable and timely threat detection. Here are the research objectives of the study 

follows as: 

• To design a DL–driven cloud–edge intelligence framework for real-time cybersecurity threat 

detection in distributed environments. 

• To utilize the CICIDS2017 benchmark dataset to model realistic network traffic and diverse 

contemporary cyber-attack scenario. 

• To develop a hybrid CNN–LSTM–GRU model capable of capturing both spatial and temporal 

attack patterns. 

• To study the impact of feature engineering, scaling, and class imbalance handling on key 

performance parameters such as accuracy, precision, recall, and F1-score. 

2. Literature Review 

The latest developments in the field of cybersecurity of IoT, cloud and critical infrastructure 

settings have focused more on the application of AI and DL algorithms to tackle the increasing 

complexity, multifacetedness and volume of cyber threats. Awan et al. (2025) [22] introduced a 

framework called SecEdge that is a transformer- and GNN-based framework with federated 

learning, and it has the highest real-time detection rates of over 98% on various benchmark 

datasets (NSL-KDD, UNSW-NB15, CICIDS2017). Likewise, Khalaf et al. (2025) [23] noted the 

constraints of the traditional rule-based systems and indicated that AI-based threat detection is 

more accurate, flexible, and has automated response functions in critical infrastructure settings 

with the performance measures as accuracy of 0.95, precision 0.93, and recall 0.92. The study by 

Hussein et al. (2023) [24] involved the approach to real-time intrusion detection based on the 

application of a Fully Streaming Big Data Framework (FSBDL) and hyper-parallel optimization 

of CNNs in order to obtain accuracy reaching over 99.9%. In [25], Malik et al. expanded AI-

based cybersecurity designs to incorporate supervised, unsupervised and reinforcement learning 

models, federated learning, and the Explainable AI (XAI), offering adaptive, scalable and 

transparent threat alleviation solutions to organization settings. The comparison of literature 

review is presented in table 1. 
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Table 1: Comparison of literature Review 

Author(s), 

Year 

Domain / Focus Dataset / 

Environment 

Model / Technique Key Contributions Performance Metrics 

Awan et al., 

2025 

Mobile IoT 

cybersecurity 

NSL-KDD, 

UNSW-NB15, 

CICIDS2017 

Transformer + GNN + 

Federated Learning 

Real-time threat 

detection with adaptive 

learning; handles 

relational data 

DoS detection: 98.8%, 

MitM: 98.5%, Data 

injection: 98.7% 

Khalaf et al., 

2025 

Critical 

infrastructure 

threat detection 

Simulated 

environment 

AI-based ML system 

with anomaly detection 

& automated response 

Adaptive real-time 

detection; reduces false 

positives; automated 

mitigation 

Accuracy: 0.95, Precision: 

0.93, Recall: 0.92, F1-

score: 0.92 

Hussen et al., 

2023 

Real-time 

intrusion 

detection 

Various network 

datasets 

FSBDL framework with 

hyper-parallel 

optimized CNN (Adam 

+ RMSprop) 

Real-time detection with 

high stability and 

reduced overfitting 

Accuracy: >99.9% 

Malik et al., 

2025 

AI-driven 

cybersecurity 

architecture 

Industry-level 

surveys & case 

studies 

Supervised, 

unsupervised, RL + 

ANN-ISM + XAI + 

Federated Learning 

Multi-layered, adaptive 

threat detection; scalable 

& explainable 

Significant improvement 

over traditional systems in 

accuracy, adaptability, and 

response time 

Farzaan et al., 

2025 

Cloud 

cybersecurity / 

incident response 

NSL-KDD, 

UNSW-NB15, 

CIC-IDS-2017 

Random Forest, Neural 

Network, Deep 

Learning + 

Containerized 

Deployment 

Automated incident 

response pipeline; 

scalable cloud 

integration 

Random Forest: Accuracy 

90–99%, Malware NN: 

99% accuracy, Precision 

96% 

Ezeh et al., 

2025 

Network traffic 

threat mitigation 

NSK-DD dataset LSTM + Autoencoder + 

Cross-correlation 

feature extraction 

Real-time feature 

evaluation and 

mitigation; low latency 

Accuracy: 98.6%, 

Precision: 97.9%, Recall: 

98.1%, F1-score: 98.0%, 

Mitigation latency <1.5s 

Adeniyi et al., 

2024 

MEC DDoS 

detection 

NF-UQ-NIDS-V2 Hybrid AE–MLP Combines feature 

extraction and DL for 

DDoS detection 

Accuracy: 99.98% 

Sathupadi et 

al., 2024 

Predictive 

maintenance 

Edge–cloud 

sensor data 

KNN (edge) + LSTM 

(cloud) 

Real-time anomaly 

detection and predictive 

failure analysis 

Latency ↓35%, Energy 

↓28%, Bandwidth ↓60% 

Areghan et al., 

2024 

Cloud threat 

detection 

AWS, Azure, 

GCP logs (~1.2M 

entries) 

RF, SVM, XGBoost, 

CNN, LSTM 

Multi-model evaluation 

for cloud platforms; risk 

scoring & real-time 

alerting 

CNN ROC-AUC: 0.94, 

LSTM: 0.91, XGBoost: 

0.87, Precision: 92%, 

Recall: 89% 

Saxena et al., 

2023 

Cloud VM threat 

prediction 

Google Cluster & 

OpenNebula VM 

traces 

MR-TPM (Multiple 

Risk Analysis + ML 

classifier) 

Proactive VM threat 

estimation; reduces 

cybersecurity risks 

Threat reduction: 88.9% 

Al-Ghuwairi et 

al., 2023 

Cloud intrusion 

detection 

Time series cloud 

data 

Collaborative Feature 

Selection + Facebook 

Prophet 

Early detection using 

time series anomalies; 

reduces false positives 

Reduced training, 

prediction, cross-

validation time by 85%, 

15%, 97% respectively 

Tyagadurgam 

et al., 2022 

Cloud IDS CICIDS2017 Bi-LSTM Captures forward & 

backward dependencies; 

handles class imbalance 

Accuracy: 98.51%, 

Precision: 99%, Recall: 

98%, F1-score: 99% 
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Other studies have looked at hybrid and domain-specific strategies to improve detection 

performance. Farzaan et al. (2025) [26] proposed an AI-based cyber incident response system for 

cloud environments, which combines DL with Random Forest models and containerized 

deployment, achieving up to 99% accuracy in malware analysis. Ezeh et al. (2025) [27] used 

LSTM in conjunction with an autoencoder for feature extraction to provide end-to-end real-time 

mitigation with low latency. Edge and hybrid frameworks were discussed by Adeniyi et al. 

(2024) [28] and Sathupadi et al. (2024) [29], who showed that DDoS detection and predictive 

maintenance could be improved through AE–MLP and KNN–LSTM models, respectively. 

Areghan et al. (2024) [30], Saxena et al. (2023) [31], and Al-Ghuwairi et al. (2023) [32] worked 

on detecting threats in the cloud using ML, assessing the risks of VMs, and modeling anomalies 

in time series data, respectively. Finally, Tyagadurgam et al., in 2022 applied Bi-LSTM models 

for advanced intrusion detection with almost 99% performance metrics across various indicators 

being reported. These studies together emphasize the effectiveness of AI-driven frameworks in 

improving real-time cybersecurity in varied environments while tackling issues like scalability, 

adaptability, and low-latency detection. 

3. Research Methodology 

The research methodology for the DL Driven Cloud–Edge Intelligence Framework for Real-

Time Big Data Based Cyber security Threat Detection is designed to ensure accurate threat 

identification, low-latency response, and scalable deployment across distributed environments. 

The methodology integrates big data processing, DL models, and cloud–edge collaboration in a 

structured and systematic manner. Figure 3 shows the flowchart of the suggested work. 

3.1 Dataset Used 

The CICIDS2017 dataset [34], which was created by the Canadian Institute for Cybersecurity, is 

a benchmark dataset that is very popular in cyber-security research. The dataset was created to 

address the limitations of the old datasets by including realistic network traffic and up-to-date 

attack scenarios. There was both benign and malicious traffic in the dataset generated in a 

controlled environment, but it was like the real world. The dataset features a vast number of 

attacks that include brute force (FTP and SSH), DoS and DDoS, botnet activity, web attacks 

(SQL injection and XSS), infiltration, and port scanning. Besides PCAP files, CICIDS2017 also 

offers flow-based features that were extracted with the help of CIC-Flow-Meter, and these 

features account for more than 84 statistical attributes per flow (as shown in Table 3). Due to its 

size, variety, and lifelike characteristics, it is an excellent dataset for testing DL-based cloud–

edge cybersecurity threat detection frameworks. The Training and Testing Split of the proposed 

dataset is given in Table 2. 
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Figure 3: Flowchart of proposed work 
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Table 2: Training and Testing Split of CICIDS2017 Dataset 

Category Class Flow Count Percentage (%) Training (70%) Testing (30%) 

Benign Benign 2,273,097 76.75 1,591,167 681,929 

DDoS DDoS 231,073 7.802 161,751 69,321 

DoS Heartbleed 11 0.0003 7 3 

DoS DoS Slowloris 5,796 0.1957 4,057 1,738 

DoS DoS GoldenEye 10,293 0.3475 3,087 7,205 

DoS DoS SlowHTTPTest 5,499 0.1856 3,849 1,649 

DoS DoS Hulk 231,073 0.0392 161,751 69,321 

Web Attack SQL Injection 5,796 0.2121 4,057 1,738 

Web Attack Brute Force 7,938 0.2906 5,556 2,381 

Web Attack XSS 5,897 0.2158 4,127 1,769 

Infiltration Infiltration 10,293 0.3768 7,205 3,087 

Port Scan Port Scan 158,930 5.8184 111,251 47,679 

Brute Force FTP-Patator 1,769 0.2906 1,238 530 

Brute Force SSH-Patator 5,897 0.2158 4,127 1,769 

Bot Bot 1,966 0.0719 1,376 589 

3.2 Data Pre-processing 

The Data Pre-processing Layer plays a critical role in the deep learning pipeline by transforming 

raw inputs into a suitable form for training, evaluation, and real-time inference [35]. The 

structure and quality of the input data strongly influence the overall performance of deep 

learning models. Effective preprocessing enhances model accuracy and reduces the risk of 

overfitting, thereby improving generalization to unseen data. In the Smart-Trust Framework, this 

layer processes raw network traffic, user activity records, and contextual data into meaningful 

features that can be utilized by deep learning models, including hybrid architectures such as 

CNN, LSTM, and GRU. The preprocessing stage involves operations such as data normalization, 

feature extraction, sequential data arrangement, and encoding of categorical attributes [36,37]. 

Figure 4 illustrates the architecture of the data pre-processing layer. 
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Figure 4: Data-preprocessing layer 

• Data Cleaning 

Data cleaning steps remove noise, duplicates, and missing values with the goal of improving data 

quality. Incomplete entries are changed via statistical imputation, thus ensuring that DL models 

can be trained effectively in a consistent and reliable manner. 

𝑥𝑖 = {
𝑥̅,      𝑥𝑖  𝑚𝑖𝑠𝑠𝑖𝑛𝑔
𝑥𝑖,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

• Data Encoding  

Data encoding changes categorical attributes into numerical representations through one-hot or 

label encoding, which makes it possible for neural networks to process protocol types, services, 

and flags without the need for ordinal bias to be introduced. 

𝑐𝑗 → [0,0, … ,1, … ,0] 

• Feature Engineering 

Feature engineering takes relevant features like packet rate and flow duration, selects and 

transforms them to lower the dimensionality while increasing the discriminative power for 

accurate cyber-security threat detection.  

𝑀𝐼(𝑓, 𝑦) = ∑ 𝑝(𝑓, 𝑦)𝑙𝑜𝑔
𝑝(𝑓, 𝑦)

𝑝(𝑓)𝑝(𝑦)
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Table 3: 84 Feature attributes 

Feature Name Feature Name Feature Name Feature Name 

Flow ID Flow Packets/s Fwd Packets/s Fwd Avg Packets/Bulk 

Source IP Flow IAT Mean Bwd Packets/s Fwd Avg Bulk Rate 

Source Port Flow IAT Std Min Packet Length Bwd Avg Bytes/Bulk 

Destination IP Flow IAT Max Max Packet Length Bwd Avg Packets/Bulk 

Destination Port Flow IAT Min Packet Length Mean Bwd Avg Bulk Rate 

Protocol Fwd IAT Total Packet Length Std Subflow Fwd Packets 

Timestamp Fwd IAT Mean Packet Length 

Variance 

Subflow Fwd Bytes 

Flow Duration Fwd IAT Std FIN Flag Count Subflow Bwd Packets 

Total Fwd Packets Fwd IAT Max SYN Flag Count Subflow Bwd Bytes 

Total Backward Packets Fwd IAT Min RST Flag Count Init_Win_bytes_forward 

Total Length of Fwd 

Packets 

Bwd IAT Total PSH Flag Count Init_Win_bytes_backward 

Total Length of Bwd 

Packets 

Bwd IAT Mean ACK Flag Count act_data_pkt_fwd 

Fwd Packet Length Max Bwd IAT Std URG Flag Count min_seg_size_forward 

Fwd Packet Length Min Bwd IAT Max CWE Flag Count Active Mean 

Fwd Packet Length Mean Bwd IAT Min ECE Flag Count Active Std 

Fwd Packet Length Std Fwd PSH Flags Down/Up Ratio Active Max 

Bwd Packet Length Max Bwd PSH Flags Average Packet Size Active Min 

Bwd Packet Length Min Fwd URG Flags Avg Fwd Segment Size Idle Mean 

Bwd Packet Length Mean Bwd URG Flags Avg Bwd Segment 

Size 

Idle Std 

Bwd Packet Length Std Fwd Header 

Length 

Fwd Header Length Idle Max 

Flow Bytes/s Bwd Header 

Length 

Fwd Avg Bytes/Bulk Idle Min 
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• Class Label Mapping 

Class label mapping takes fine-grained attack labels and puts them into a standardized category 

in order to simplify the classification task and enhance model generalization over different types 

of attacks as well as more normal patterns of network traffic. 

𝑦′ = 𝑔(𝑦),     𝑦′ ∈ {1, … , 𝐶} 

• Feature Scaling 

Feature scaling normalizes numerical attributes to a common range through either 

standardization or min–max normalization, thus avoiding the problem of features with high 

magnitudes dominating the others and making the neural network converge faster when training. 

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

• Class Imbalance Handling  

Class imbalance handling uses resampling or cost-sensitive methods to make the minority and 

majority classes equal, thereby increasing the identification of rare cyber-attacks and lessening 

the bias towards normal traffic samples. 

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆(𝑥𝑗 − 𝑥𝑖), 𝜆 ∈ (0,1) 

3.3 Deep Learning Model 

• CNN, LSTM and GRU 

Fundamentally, “Convolutional Neural Networks (CNN)”, “Long Short-Term Memory 

(LSTM)”, and “Gated Recurrent Units (GRU)” are DL architectures of significant power and 

complexity, which are mainly utilized in threats to Upgrade Security in the network [38]. CNNs 

are very effective in pulling out spatial features from network traffic data through the 

identification of local patterns and correlations in input sequences like packet headers or flow 

characteristics. As a result, it becomes on the lookout for abnormal behaviors and attack 

signatures. Moreover, LSTM networks, which are a form of recurrent neural networks (RNNs), 

are capable of remembering long-term relationships in the temporal side of sequential data, 

hence they are able to recognize the patterns of network intrusions which are gradually changing 

over time [39]. Memory cells address the vanishing gradient problem and can accurately learn 

from past dependencies. “Gated recurrent unit (GRU)” networks further simplify the memory 

cell mechanism by combining the forget gate and the input gate into a single update gate, which 

allows for faster computation without sacrificing accuracy. GRU networks are highly beneficial 

in dynamic and complex network settings with limited computational resources [40]. In this way, 

when they are used together, CNN extracts spatial features, while LSTM and GRU provide 

temporal and sequential relationships. In this way, the hybrid model can detect both known and 

unknown intrusions to a high degree of accuracy. In combination, they can improve intrusion 
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detection accuracy, reduce false alarms, and increase the resilience of cyber security against 

threats to an evolving environment [41]. Figure 5 shows the architecture of CNN, LSTM, and 

GRU. 

   

 

Figure 5: Architecture of CNN, LSTM, and GRU 

• CNN-LSTM-GRU 

The CNN-LSTM-GRU is a hybrid model that is effective in capturing both spatial and temporal 

information in sequential data. This model has the advantages of convolutional and recurrent 

neural networks. The CNN layer finds significant features and local spatial patterns based on 

input data such as signals, pictures or time series sequences. Afterward, the LSTM-layer acquires 

long-term dependencies and thus maintains sequential relationships but reduces the problem of 

vanishing gradients. GRU layer further simplifies temporal learning by requiring less parameters, 

training better and generalizing better. The CNN-LSTM-GRU pipeline can be formally described 

as: 

LSTM cell equations: 
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𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

𝑐𝑡̃ = tanh (𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡̃ 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡) 

GRU cell equations: 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) 

ℎ𝑡̃ = tanh (𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ𝑡̃ 

Tasks like intrusion detection, voice recognition, healthcare monitoring, and financial time-series 

forecasting are much improved by this architecture, which also improves sequence modeling and 

prediction accuracy [42]. 

3.4 Evaluation Metrics 

The model's performance was evaluated using Equations (9)–(12), where 𝑨𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚, 𝑭𝟏𝒔𝒄𝒐𝒓𝒆, 

𝑷𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏, and 𝑹𝒓𝒆𝒄𝒂𝒍𝒍 are the relevant variables  [43,44]. 

• “TP (true positive): If the model predicts Norm, it is the accurate response. 

• FP (false positive): If the model predicts Norm, the accurate response is Attack. 

• TN (true negative): If the model predicts Attack and this is the right response. 

• FN (false negative): If the model predicts Attack, the accurate response is Norm”. 

 

Figure 6: Confusion Matrix 
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                                          Accuracy =
TN+TP

TP+FN+FP+TN
                                           (7) 

                                               Precision = 
NA

NA+FP
           (8) 

                                                 Recall = 
NA

FN+NA
                                            (9) 

                                                             F1 score = 
2×precision×recall

recall+precision
                     (10) 

4. Results and Discussion 

In this section, the experimental results of the proposed DL-based cloud-edge cyber-security 

framework, and discuss them. Each of the models was executed and tested in Python 

programming environment, and the data was preprocessed and model train and trained with the 

help of the following libraries: TensorFlow, Keras, NumPy, and Scikit-learn. Binary and 

multiclass intrusion detection was evaluated using the CICIDS2017. Accuracy, precision, recall, 

F1-score, and confusion matrices, ROC, and Precision Recall curves were calculated to give a 

detailed analysis. The findings are thoroughly discussed to bring out effectiveness of models, 

comparative performance and robustness under varying attack conditions. 

4.1 CNN 

Figure 7 shows the performance of the CNN-based binary classifier training with the 

CICIDS2017 dataset. The subfigure of the left gives the trends of accuracy with five epochs. 

Accuracy of training is steadily growing, 0.9870 at epoch 0 and 0.9902 at epoch 4, and the 

validation accuracy is growing as well, 0.9885 to 0.9899, which means that the learning 

progresses steadily and the results are beneficial in terms of generalization. The right subfigure 

shows the loss convergence, the training loss is reduced to 0.027, and the validation loss is 

reduced to 0.023. The tight convergence between the training and validation curve indicates that 

the model has been optimized and the performance is steady in all the epochs. 

 

Figure 7: CNN binary model accuracy and loss across training epochs.. 
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The Figure 8 shows how CNN-based multiclass classification model performs over 5 training 

epochs. The accuracy plot shows that training accuracy is increasing with the epoch starting at 

0.84 up to 0.89 and validation accuracy is also increasing starting at 0.89 up to 0.92, and this 

implies that the model is learning effectively and generalizing better. The loss plot has steadily 

decreased initially by 0.27 to 0.10 at the final epoch in an indication of a successful model 

optimization. The loss in validation reduces to 0.22, with slight changes in mid epochs. Training 

and validation curve disparity is also not high which indicates that convergence is stable and 

overfitting decreases. In general, the findings qualify the strength and ability of CNN model in 

multiclassification tasks. 

 

Figure 8: CNN multiclass model accuracy and loss across training epochs. 

The figure 9 shows the results of a CNN model with binary and multiclass confusion matrices. In 

the binary classification scenario, the model correctly labels 394833 benign samples and 63379 

attack samples. False alarms are also quite minimal with 631 benign cases falsely predicted as 

attack (false positive) and 3,919 attack cases falsely predicted as benign (false negative), which 

shows great detection ability and discrimination between the classes. In the multiclass confusion 

matrix, the diagonal dominance is an indication of true classification of multiple attack 

categories and the highest value of true positive is benign class with 3.5 × 10 5 (approximately). 

Some minor confusion is identified between close forms of attacks like DoS and Brute Force, 

yet, overall, the misclassification is not significant, which proves the restrictiveness and 

scalability of the CNN to multi-category intrusion detection. 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)  

Vol. 8, Issue No. 1, pp 13 - 44, 2026                                                             www.carijournals.org 

28 
 

    

 

Figure 9: CNN confusion matrices for binary and multiclass intrusion detection. 

The performance evaluation of the CNN-based binary intrusion detection model is illustrated in 

figure 10 through Precision-Recall (PR) and Receiver Operating Characteristic (ROC) curves. 

The PR curve shows that the model consistently achieves high precision across almost the whole 

range of recall, meaning that it has a very low false-positive rate even when the recall is high. 

The average precision (AP) score of 0.9967 is an indication of the model’s excellent 

performance in detecting attack instances in the case of an imbalanced dataset. The ROC curve 

also supports the strong classifier, gaining an AUC of 0.9993, which is very close to 1, the ideal 

value. The curve is consistently near the top-left corner, showing that there is an outstanding 

separation between the two classes (benign and attack) with a very low number of false alarms 

and a high true positive rate. 

 

Figure 10: PR and ROC curves of the CNN binary intrusion detection model. 
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4.2 LSTM 

The training and validation results of a binary classification LSTM model in terms of loss and 

accuracy during various epochs are depicted in the figure 11. The accuracy curve shows regular 

increase and the accuracy of training improved with time; at epoch 0, the accuracy was 96.5 

percent but at epoch 4 the accuracy has improved to approximately 98.8 percent. In the same 

manner, the accuracy of validation becomes 97.1 to almost 99.0, which exhibits high 

generalization. The loss plots show that the training loss decreases steadily with increasing 

epochs, the training loss declines to about 0.115 and validation loss declines to about 0.034. The 

fact that the training and validation curves come close indicates that there is no drastic change in 

learning behavior and there is low overfitting. On the whole, the findings demonstrate good 

model convergence with a high level of accuracy and minimal loss in a limited number of 

training cycles. 

 

Figure 11: Training and validation accuracy and loss of the LSTM binary classification model. 

Figure 12 shows the performance of the LSTM-based multiclass classification model in training 

and validation over five epochs. The training accuracy rises steeply from 70% at epoch 0 to 

about 81% by epoch 1, peaking at roughly 84% in epoch 2 with some minor fluctuations 

afterward and settling close to 83% at epoch 4. Validation accuracy starts relatively high, around 

84%, then slightly drops to about 83% by epoch one before more significantly declining down to 

roughly 76% at epoch two; it recovers almost fully back up to near 80% by the fourth epoch. The 

loss curves indicate that training loss decreases from approximately 0.55 through the second 

epoch but then increases slightly up to 0.31 while validation loss generally trends downwards 

from 0.61 toward something close to 0.47, indicating learning has taken place with moderate 

class-wise variability. 
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Figure 12: Training and validation accuracy and loss of the LSTM multiclass classification model 

The illustration in Figure 13 shows the LSTM model performance through binary and multiclass 

confusion matrices. The binary classification matrix shows the model achieves perfect 

identification for 394,468 benign samples and 63,468 attack samples which demonstrates its high 

classification performance. The system makes two types of errors: 996 benign cases get flagged 

as attacks (false positives) while 3,830 attack cases pass through as non-intrusions (false 

negatives). The multiclass confusion matrix shows the prediction results for each class on a 

logarithmic scale which includes Benign, Botnet, Brute Force, DoS, Infiltration, PortScan and 

WebAttack categories. Strong diagonal dominance is observed, particularly for Benign and DoS 

classes, signifying high correct classification rates. The model shows slight confusion between 

Botnet and Brute Force and PortScan attacks but its overall performance stays strong for 

multiclass intrusion detection. 

 

Figure 13: Binary and multiclass confusion matrices of the LSTM model for intrusion detection. 

The values 14 show the analysis of the LSTM-based binary classification model on PR and ROC 

curves. The PR curve is steady in high precision throughout nearly the most of the recall which is 
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only slightly reduced at the full recall which is a sign of effective attack detection with minimum 

false positive rate. The value of the Average Precision (AP) of 0.9936 proves that the model is 

working well with a lack of balance in data. The ROC curve also exhibits a high level of 

discriminatory ability with an Area Under the Curve (AUC) of 0.9986 that is very near to the 

theoretical figure of 1. The curve is still close to the top-left side indicating a high true positive 

and a very low rate of false positive. In general, the findings suggest that the LSTM mechanism 

is able to deliver very much accurate and strong binary classification results. 

 

Figure 14: PR and ROC curves of the LSTM binary classification model. 

4.3 GRU 

Figure 15 shows the training and validation results of the binary classification using GRU model 

in accuracy and loss per epoch. Accuracy plot indicates that convergence is rapid where the 

training accuracy at epoch 0 is around 96.2% which is raised to 99.0% at epoch 4. Similar is the 

case of validation accuracy which increased to about 97.6 to almost 99.0 and this shows high 

generalization. The loss curves show a steady decrease with epochs, with training loss falling 

between 0.112 and 0.028, and validation loss falling between 0.072 and 0.025. The fact that the 

training and validation measures are close implies that learning behavior is stable, and overfitting 

is minimal. In general, the GRU model obtains high precision and low loss in few training 

epochs, which show that it is an efficient model to use in a binary classification task. 
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Figure 15: Training and validation accuracy and loss of the GRU binary classification model. 

The training and validation performance of the GRU based multiclass classification model is 

provided in the figure 16 in terms of five epochs. The accuracy of training is continuously 

improving with an overall process of improving to a high level of about 59 percent at epoch 0 

improving to about 75 percent at epoch 1, and 82 percent at epoch 2 and then finally 87 percent 

at epoch 4. The validation accuracy begins approximately at 66% and increases sharply to almost 

88% at epoch 1 and slightly to approximately 91% at epoch 4 which means that there is good 

generalization to various classes. The loss curves show a steady decline whereby the training loss 

declines as well as validation loss declines respectively as 0.67 and 0.92. The small changes in 

validation loss indicate that there is variability in the classification per class, but the convergence 

in general proves the power of the GRU model to classify in multiclass classification. 

 

Figure 16: Training and validation accuracy and loss of the GRU multiclass classification model. 

This figure 17 shows the results of the GRU-based model in binary and multiclass confusion 

matrices. The model is very accurate on detecting benign samples since it correctly classifies 

394,420 samples and 63,836 attack samples in the binary confusion matrix. There is also a low 

level of misclassification (1,044 benign false positives and 3,462 attack false positives and false 

negatives). The multiclass confusion matrix presented in a logarithmic scale, illustrates the 
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behavior of the prediction by classes on a category of Benign, Botnet, Brute Force, DoS, 

Infiltration, PortScan, and WebAttack. Good diagonal dominance is detected especially in the 

Benign and DoS classes and this means that the classification is reliable. There is some 

confusion that is observed between the related types of attack such as Botnet, Brute force and 

PortScan, the overall misclassification is not very high, which confirms that the GRU model is 

beneficial and efficient in intrusion detection both binary and multi-class. 

 

Figure 17: Binary and multiclass confusion matrices of the GRU model for intrusion detection. 

Figure 18 shows how well the GRU-based binary classification model works using PR and ROC 

curves. The PR curve shows that the precision is high over almost all the recall range, with just a 

small drop near full recall, meaning it can reliably detect attack instances with very few false 

positives. The Average Precision score of 0.9955 means strong classification performance, 

especially under class imbalance. The ROC curve further illustrates this by giving an AUC of 

0.9990, which is very close to the ideal value of 1; here, the curve stays concentrated near the 

top-left corner, indicating a high true positive rate at a very low false positive rate. Results 

confirm the robustness and effectiveness of the GRU model for binary intrusion detection tasks. 

 

Figure 18: PR and ROC curves of the GRU binary classification model. 
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4.4 Hybrid Model of CNN+LSTM+GRU 

The graph 19 shows the training and validation performance of the hybrid CNNLSTMGRU 

binary classification model in terms of loss and accuracy in five epochs. The loss curves indicate 

a quick decrease in training and validation loss values over the 4 epochs, training loss at epoch 0 

is approximately 0.060 and at the 4th epoch it is approximately 0.023, and validation loss at 

epoch 0 is approximately 0.039 and at epoch 4 is approximately 0.020 which indicate that 

learning has been stabilized and overfitting is limited. The accuracy plot indicates steady 

improvement where the training accuracy grows by approximately 98.1 percent to almost 99.2 

percent, and validation accuracy by approximately 98.7 percent to close to 99.3 percent across 

the training epochs. High generalization is emphasized by the fact that training and validation 

measures are closely correlated. In general, the hybrid CNN-LSTM-GRU model has high 

precision and the loss is low, and it proves to be effective in the task of binary classification. 

 

Figure 19: Training and validation accuracy and loss of the hybrid CNN–LSTM–GRU binary model. 

The figure 20 presents the training and validation performance of the hybrid CNN–LSTM–GRU 

multiclass classification model across five epochs. The training accuracy shows a steady increase 

from approximately 73% at epoch 0 to about 86% at epoch 1, reaching nearly 89% at epoch 3 

and stabilizing around 89–90% by epoch 4. Validation accuracy starts high at around 91%, peaks 

at approximately 95% at epoch 1, slightly decreases to 91% at epoch 2, and then recovers to 

nearly 93% at epoch 4, indicating good generalization across multiple classes. The loss curves 

demonstrate consistent convergence, with training loss decreasing from roughly 0.43 to 0.14, 

while validation loss reduces from about 0.33 to approximately 0.22. Minor fluctuations in 

validation loss suggest class-wise variability, but overall trends confirm effective learning and 

stable multiclass performance of the hybrid model. 
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Figure 20: Training and validation accuracy and loss of the hybrid CNN–LSTM–GRU multiclass model. 

This figure 21 shows the performance of the hybrid CNN-LSTM-GRU model on binary and 

multiclass confusion matrices. The model distinguishes correctly 394,924 benign samples and 

64,367 attack samples in the binary classification matrix which means that it has high detection 

accuracy. There is also low misclassification with only 540 benign cases being wrongly 

predicted as attacks (false positives) and 2,931 attack cases being wrongly predicted as benign 

cases (false negatives). The multiclass confusion matrix, which is presented in the form of a 

logarithmic-scaled table, depicts great dominance of the diagonal among classes and Benign, 

Botnet, Brute Force, DoS, Infiltration, PortScan, and WebAttack, which are correct predictions 

made by classes. There are some high counts of correct classification in the DoS and Benign 

categories. Minimal confusion is witnessed between related types of attacks, particularly 

between Botnet and Brute Force, but generally the error rates are low, which proves the strength 

and stability of the hybrid model in binary and multiclass intrusion detection. 

 

Figure 21: Binary and multiclass confusion matrices of the hybrid CNN–LSTM–GRU model. 

The figure 22 provides the PR curve of the hybrid CNN-LSTM-GRU binary classification. Most 

recall values lie close to the upper limit of the curve thus meaning that the precision is also high 

over a large degree of recall. This performance shows that the model was highly accurate in 

detecting attack cases and it has a very low false positive. The aforementioned classifier results 

of 0.9972 on the reported Average Precision (AP) demonstrate that the classification is excellent, 

especially in the conditions of class imbalance. Minor loss in accuracy occurs only at test limits 
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of full recall which is common at detection sensitivity maximization. All in all, the PR curve 

shows that the hybrid model is robust and reliable in detecting binary intrusions. 

 

Figure 22: Precision–Recall curve of the hybrid CNN–LSTM–GRU binary model. 

The chart 23 below shows how well the hybrid multiclass model did for each class using 

precision, recall, and F1-score. For precision, the Benign class had a perfect score of 1.00; DoS 

had 0.85 and Brute Force has moderate precision at 0.45. Botnet (0.04), PortScan (0.15), 

WebAttack (0.06), and very low values for Infiltration and Other have near zero values which 

means more false positives for these classes are indicated by lower precision values. Recall 

values are high with other (1.00), DoS (0.98), Brute Force (0.97), PortScan (0.96), and 

WebAttack (0.93) while Infiltration has relatively lower recall at 0.71; this is reflected in the F1-

scores that show good balance with strong performances from Benign (0.96) and DoS (0.91), 

moderate from Brute Force (0.62), and lower scores from minority attack classes indicating 

effects of class imbalances. 
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Figure 23: Per-class precision, recall, and F1-score of the hybrid multiclass model. 

The given figure 24 represents the ROC curve for the binary classification CNN-LSTM-GRU 

hybrid model. The curve lies close to the top-left corner, thereby substantiating robust 

discrimination between the classes of benign examples and attack examples. The obtained Area 

Under Curve (AUC) is 0.9994, which is nearly equal to 1. It confirms near-excellent 

performance of classification. The high value of true positive rate is preserved even for a low 

value of false positive rate, thereby validating effective detection of attacks. The diagonal line in 

the figure denotes random classification. The large gap between the ROC curve of the developed 

model and the diagonal line for random classification ensures robustness of the model for binary 

classifications in intrusion detection. 

 

Figure 24: ROC curve of the hybrid CNN–LSTM–GRU binary classification model. 

The bar graph 25 illustrates the evaluation of AUC values for different models employed in 

binary intrusion detection. The CNN model receives a very high score of 0.99931 in terms of 

AUC, denoting a great ability to differentiate. The LSTM model is not far behind with an AUC 
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of 0.99856, which means that there is still a strong but less powerful performance than that of the 

previous model. The GRU model, taking advantage of the LSTM model, the learning of time-

based features, and thus being able to get an AUC of 0.99902, is a little stronger than LSTM. The 

hybrid CNN-LSTM-GRU model gets the highest AUC of 0.99941, beating all single 

architectures. The close spread of AUC values, which are all above 0.998, ensures that the 

performance of each model is excellent; however, the hybrid technique gives the most powerful 

classification with the best true positive and false positive balance. This comparison emphasizes 

the benefit of using a combination of spatial and temporal feature extraction for binary intrusion 

detection. 

 

Figure 25: Comparison of AUC values for binary intrusion detection models. 

The figure 26 presents model accuracies for binary and multiclass classification tasks in intrusion 

detection scenarios. For binary classification, model accuracies are nearly equal to 1, with CNN 

at 99.10%, LSTM at 98.95%, GRU at 99.00%, and the hybrid CNN-LSTM-GRU model 

achieving the highest accuracy of 99.24%. In the multiclass scenario, accuracy values are lower 

due to increased class complexity: CNN attains 91.93%, LSTM has the lowest multiclass 

accuracy of 80.28%, GRU reaches up to 92.36%, and again, the hybrid model leads all others 

with an accuracy of 93.35%. Results indicate both the hybrid approach's superiority as a practical 

choice and how different binary versus multiclass intrusion detection tasks affect performances. 
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Figure 26: Binary and multiclass accuracy comparison of intrusion detection models. 

The table 4 below presents a summary of recent intrusion detection studies by model, dataset, 

and accuracy. Santhadevi et al. (2023) applied a CNN–Stacked LSTM model to the NBaIoT 

dataset and achieved 97.39% accuracy, which demonstrates good feature learning for IoT traffic. 

Akinbolaji et al. (2024) used hybrid CNN and RNN architecture on the KDD Cup 1999 dataset 

with reported accuracy of 95%. Farzaan et al. (2025) implemented a Random Forest classifier on 

the NSL-KDD dataset to achieve 90% accuracy. Ethan et al. (2024) fused CNN, LSTM, and 

Transformer models using the CICIDS2017 dataset with an attained accuracy of 97.2%. The 

proposed CNN–LSTM–GRU model tested over the same CICIDS2017 dataset outperforms all 

previous proposals at a maximum recorded accuracy of 99.24%, proving its usability in intrusion 

detection applications. The figure illustrates the accuracy comparison of various intrusion 

detection models, with the CNN–LSTM–GRU model achieving the highest performance. 

Table 4: Comparison of intrusion detection models and their classification accuracy. 

Authors [Reference] Model Datasets Accuracy 

Authors (Year) [Ref.] Model Dataset Accuracy (%) 

Santhadevi et al. (2023) [45] CNN–Stacked LSTM NBaIoT 97.39 

Akinbolaji et al. (2024) [46] CNN and RNN KDD Cup 1999 95.00 

Farzaan et al. (2025) [47] Random Forest NSL-KDD 90.00 

Ethan et al. (2024) [48] CNN + LSTM + 

Transformer 

CICIDS2017 97.20 
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Figure 27: Comparison graph of different intrusion detection models. 

5. Conclusion and Future Scope 

The findings of this study provide important theoretical contributions to the field of 

cybersecurity and intelligent systems. From a practical perspective the proposed cloud edge deep 

learning framework offers a viable and deployable solution for real time cybersecurity threat 

detection in modern network environments. The study also carries important policy implications 

for cybersecurity governance and digital infrastructure regulation. Policymakers and regulatory 

bodies can leverage the findings to promote the adoption of artificial intelligence driven security 

mechanisms as part of national and organizational cybersecurity strategies. Based on the findings 

future research should focus on integrating federated learning techniques to enhance data privacy 

and reduce dependency on centralized data storage. Incorporating explainable deep learning 

methods would further improve transparency and trust in automated intrusion detection 

decisions. Additionally, evaluating the framework on more recent and diverse datasets as well as 

testing its performance in real world operational environments would strengthen its applicability 

and robustness. These enhancements would further position the proposed framework as a 

scalable trustworthy and adaptive solution for next generation cloud edge cybersecurity systems.. 
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