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Abstract

Purpose: The rapid expansion of cloud computing, edge intelligence, and big data environments
has increased the scale and sophistication of cybersecurity threats. This study aims to develop an
intelligent real-time cyber-threat detection framework based on deep learning within a cloud—
edge intelligence architecture, capable of effectively analyzing large-scale network traffic data.

Methodology: The proposed framework employs the CICIDS2017 benchmark dataset and
applies multiple stages of data preprocessing, feature engineering, and class distribution
balancing. Several deep learning models—Convolutional Neural Networks (CNN), Long Short-
Term Memory (LSTM), and Gated Recurrent Unit (GRU)—are designed to capture spatial and
temporal attack patterns. In addition, a hybrid CNN-LSTM—-GRU model is developed to
leverage the complementary strengths of these architectures. Model performance is evaluated
using both binary and multiclass classification tasks.

Findings: Experimental results demonstrate that the hybrid CNN-LSTM-GRU model
outperforms individual models across all evaluation metrics. In binary classification, the hybrid
model achieves an accuracy of 99.24%, surpassing CNN (99.10%), GRU (99.00%), and LSTM
(98.95%). For multiclass classification, the hybrid model attains an accuracy of 93.35%,
exceeding CNN (91.93%), GRU (92.36%), and LSTM (80.28%). These results confirm the
framework’s strong capability for accurate and real-time cyber-threat detection.

Unique Contribution to Theory, Practice and Policy:This study contributes theoretically by
demonstrating the effectiveness of integrating spatial and temporal deep learning models for
cyber-threat detection. Practically, it provides a high-performance cloud—edge intelligence
framework suitable for real-time deployment in complex network environments. From a policy
perspective, the findings support the adoption of advanced Al-driven security mechanisms to
enhance national and organizational cybersecurity resilience in cloud and edge computing
infrastructures.

Keywords: Cyber-security, Cloud—Edge Intelligence, Deep Learning, Intrusion Detection, Big
Data Analytics
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1. Introduction

The rapid expansion of cloud computing, edge intelligence, and big data technologies has
fundamentally transformed modern digital infrastructures, enabling scalable computation, real-
time analytics, and ubiquitous connectivity across diverse application domains [1]. As much as
these innovations are helpful in supporting smart cities, health care systems, automation of
industries, and Internet of Things (IoT) networks and ecosystems, they have also dramatically
widened the attack surface of cyber threats [2]. The large scale, speed, and amount of data at
cloud and edge layers render standard security systems unsuitable in detecting and responding to
advanced and novel cyber-attacks [3]. The consequence is an increase in demand of smart,
dynamic and real time cyber security systems that are able to perform effectively at distributed
computing environment. The various typical attacks or threats with respect to cybersecurity are
depicted in figure 1.

Conventional cyber security approaches, such as signature-based intrusion detection systems and
rule-based firewalls, depend on predefined patterns and centralized processing [4]. These
methods are effective against known attacks but fall short in recognizing zero-day exploits,
advanced persistent threats, and polymorphic malware that are continuously changing their
structure and behavior [5]. Additionally, the centralized nature of traditional cloud-based security
solutions creates latency, bandwidth overheads, and single points of failure - all critical
limitations for time-sensitive applications [6]. Edge computing has recently emerged as a
paradigm that brings computation close to data sources; hence it can be an opportunity to
overcome these constraints by facilitating faster response times while reducing the amount of
data transmitted to centralized cloud servers [7].

A Ransomware ?

Nalware

Maninthe 4 4
Middie attack

Zero-day
Phishing exploit
f
SQL Cyber-Attacks ‘
injoction = DNS
Tunneling
& a
&
—
Dos and XSS attacks

DOoS attack  Soclil engineening
Figure 1: Several common attacks or threats in the context of cybersecurity [8].

Cloud-edge intelligence, in this regard, has become one of the promising paradigms involving
the combination of the high-computation capabilities of cloud platforms and the storage
capabilities of cloud platforms with the low-latency and context-aware processing of edge
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devices [9]. Cloud-edge systems can promote scaleable, robust, and real-time cyber security
functions by allocating analytics and decision-making both to cloud and edge layers [10].
Nevertheless, the non-uniformity of devices, dynamic network profiles and persistent streams of
data make it extremely difficult to establish effective threats detection mechanisms in such
contexts. It is then necessary to apply intelligent automation and learning methods to handle this
complexity and provide a high level of security over the entire infrastructure [11].

DL has already proven itself to be exceptionally effective at identifying intricate patterns in
massive amounts of data, and has become a major facilitator to the next generation of cyber
security solutions (Figure 2) [12]. DL models in contrast to the traditional approaches of machine
learning are able to learn hierarchical representations automatically of raw data and are thus
specifically suited to analyzing high dimensional, and unstructured cyber security data including
network traffic, system logs and user behavioral patterns [13,14].” Convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM)”
networks have demonstrated the great potential in the detection of intrusions, malware, and
anomalous activities at a high rate of accuracy [15,16].

Cybersecurity Framework

Traditional Cybersecurity Cybersecurity with DL

i |
1 LI 1

Incident Threat Manual Anomoly Behavioral Automated
i 3 : Threat
Response Intelligence Threat Detection Analysis Detection

Figure 2: Deep Learning in Cyber-security [17].

DL integration into a cloud-edge intelligence framework supports real-time threat detection
while satisfying latency and scalability requirements [18]. Edge nodes can conduct preliminary
analysis and anomaly detection on local data streams for immediate responses to potential
threats, whereas the cloud layer can manage more complex model training, global threat
correlation, and long-term analysis using aggregated big data [19,20]. Such collaborative
processing not only improves detection efficiency but also enhances system resilience by
distributing security intelligence across multiple layers [21].

The study presents an intelligent system of cloud-edge cyber security threat detection by using
big data analytics which is proposed to be based on DL. The dataset used in the study is
CICIDS2017 as it is used to simulate realistic attack and network traffic and subsequently,
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extensive data preprocessing such as cleaning, encoding, feature engineering, scaling, and class
imbalance management is conducted. The hybrid CNN-LSTM-GRU model is created to
concurrently identify both spatial and temporal correlations of network flows. The edge node
does low-latency anomaly detection and the cloud manages model training and analysis on a
global level. The framework is tested with the standard performance measures in order to show
accurate scalable and timely threat detection. Here are the research objectives of the study
follows as:

e To design a DL—driven cloud—edge intelligence framework for real-time cybersecurity threat
detection in distributed environments.

e To utilize the CICIDS2017 benchmark dataset to model realistic network traffic and diverse
contemporary cyber-attack scenario.

e To develop a hybrid CNN-LSTM—GRU model capable of capturing both spatial and temporal
attack patterns.

e To study the impact of feature engineering, scaling, and class imbalance handling on key
performance parameters such as accuracy, precision, recall, and F1-score.

2. Literature Review

The latest developments in the field of cybersecurity of 10T, cloud and critical infrastructure
settings have focused more on the application of Al and DL algorithms to tackle the increasing
complexity, multifacetedness and volume of cyber threats. Awan et al. (2025) [22] introduced a
framework called SecEdge that is a transformer- and GNN-based framework with federated
learning, and it has the highest real-time detection rates of over 98% on various benchmark
datasets (NSL-KDD, UNSW-NBI15, CICIDS2017). Likewise, Khalaf et al. (2025) [23] noted the
constraints of the traditional rule-based systems and indicated that Al-based threat detection is
more accurate, flexible, and has automated response functions in critical infrastructure settings
with the performance measures as accuracy of 0.95, precision 0.93, and recall 0.92. The study by
Hussein et al. (2023) [24] involved the approach to real-time intrusion detection based on the
application of a Fully Streaming Big Data Framework (FSBDL) and hyper-parallel optimization
of CNNs in order to obtain accuracy reaching over 99.9%. In [25], Malik et al. expanded Al-
based cybersecurity designs to incorporate supervised, unsupervised and reinforcement learning
models, federated learning, and the Explainable AI (XAI), offering adaptive, scalable and
transparent threat alleviation solutions to organization settings. The comparison of literature
review is presented in table 1.
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Table 1: Comparison of literature Review

Author(s), Domain / Focus Dataset / Model / Technique Key Contributions Performance Metrics
Year Environment
Awan et al., | Mobile IoT | NSL-KDD, Transformer + GNN + | Real-time threat | DoS detection: 98.8%,
2025 cybersecurity UNSW-NBI5, Federated Learning detection with adaptive | MitM: 98.5%, Data
CICIDS2017 learning; handles | injection: 98.7%
relational data
Khalaf et al., | Critical Simulated Al-based ML system | Adaptive real-time | Accuracy: 0.95, Precision:
2025 infrastructure environment with anomaly detection | detection; reduces false | 0.93, Recall: 0.92, F1-
threat detection & automated response positives; automated | score: 0.92
mitigation
Hussen et al., | Real-time Various network | FSBDL framework with | Real-time detection with | Accuracy: >99.9%
2023 intrusion datasets hyper-parallel high  stability  and
detection optimized CNN (Adam | reduced overfitting
+ RMSprop)
Malik et al, | Al-driven Industry-level Supervised, Multi-layered, adaptive | Significant improvement
2025 cybersecurity surveys & case | unsupervised, RL + | threat detection; scalable | over traditional systems in
architecture studies ANN-ISM + XAI + | & explainable accuracy, adaptability, and
Federated Learning response time
Farzaan et al., | Cloud NSL-KDD, Random Forest, Neural | Automated incident | Random Forest: Accuracy
2025 cybersecurity /| UNSW-NBI1S5, Network, Deep | response pipeline; | 90-99%, Malware NN:
incident response | CIC-IDS-2017 Learning + | scalable cloud | 99% accuracy, Precision
Containerized integration 96%
Deployment
Ezeh et al, | Network traffic | NSK-DD dataset LSTM + Autoencoder + | Real-time feature | Accuracy: 98.6%,
2025 threat mitigation Cross-correlation evaluation and | Precision: 97.9%, Recall:

feature extraction

mitigation; low latency

98.1%, Fl-score: 98.0%,
Mitigation latency <I.5s

Adeniyi et al., | MEC DDoS | NF-UQ-NIDS-V2 | Hybrid AE-MLP Combines feature | Accuracy: 99.98%
2024 detection extraction and DL for
DDoS detection
Sathupadi et | Predictive Edge—cloud KNN (edge) + LSTM | Real-time anomaly | Latency |35%, Energy
al., 2024 maintenance sensor data (cloud) detection and predictive | |28%, Bandwidth |60%
failure analysis
Areghan et al., | Cloud threat | AWS, Azure, | RF, SVM, XGBoost, | Multi-model evaluation | CNN ROC-AUC: 0.94,
2024 detection GCP logs (~1.2M | CNN, LSTM for cloud platforms; risk | LSTM: 0.91, XGBoost:
entries) scoring & real-time | 0.87, Precision: 92%,
alerting Recall: 89%
Saxena et al., | Cloud VM threat | Google Cluster & | MR-TPM (Multiple | Proactive VM threat | Threat reduction: 88.9%
2023 prediction OpenNebula VM | Risk Analysis + ML | estimation; reduces
traces classifier) cybersecurity risks
Al-Ghuwairi et | Cloud intrusion | Time series cloud | Collaborative Feature | Early detection wusing | Reduced training,
al., 2023 detection data Selection + Facebook | time series anomalies; | prediction, Cross-
Prophet reduces false positives validation time by 85%,
15%, 97% respectively
Tyagadurgam Cloud IDS CICIDS2017 Bi-LSTM Captures  forward & | Accuracy: 98.51%,
etal., 2022 backward dependencies; | Precision: 99%, Recall:

handles class imbalance

98%, F1-score: 99%
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Other studies have looked at hybrid and domain-specific strategies to improve detection
performance. Farzaan et al. (2025) [26] proposed an Al-based cyber incident response system for
cloud environments, which combines DL with Random Forest models and containerized
deployment, achieving up to 99% accuracy in malware analysis. Ezeh et al. (2025) [27] used
LSTM in conjunction with an autoencoder for feature extraction to provide end-to-end real-time
mitigation with low latency. Edge and hybrid frameworks were discussed by Adeniyi et al.
(2024) [28] and Sathupadi et al. (2024) [29], who showed that DDoS detection and predictive
maintenance could be improved through AE-MLP and KNN-LSTM models, respectively.
Areghan et al. (2024) [30], Saxena et al. (2023) [31], and Al-Ghuwairi et al. (2023) [32] worked
on detecting threats in the cloud using ML, assessing the risks of VMs, and modeling anomalies
in time series data, respectively. Finally, Tyagadurgam et al., in 2022 applied Bi-LSTM models
for advanced intrusion detection with almost 99% performance metrics across various indicators
being reported. These studies together emphasize the effectiveness of Al-driven frameworks in
improving real-time cybersecurity in varied environments while tackling issues like scalability,
adaptability, and low-latency detection.

3. Research Methodology

The research methodology for the DL Driven Cloud-Edge Intelligence Framework for Real-
Time Big Data Based Cyber security Threat Detection is designed to ensure accurate threat
identification, low-latency response, and scalable deployment across distributed environments.
The methodology integrates big data processing, DL models, and cloud—edge collaboration in a
structured and systematic manner. Figure 3 shows the flowchart of the suggested work.

3.1 Dataset Used

The CICIDS2017 dataset [34], which was created by the Canadian Institute for Cybersecurity, is
a benchmark dataset that is very popular in cyber-security research. The dataset was created to
address the limitations of the old datasets by including realistic network traffic and up-to-date
attack scenarios. There was both benign and malicious traffic in the dataset generated in a
controlled environment, but it was like the real world. The dataset features a vast number of
attacks that include brute force (FTP and SSH), DoS and DDoS, botnet activity, web attacks
(SQL injection and XSS), infiltration, and port scanning. Besides PCAP files, CICIDS2017 also
offers flow-based features that were extracted with the help of CIC-Flow-Meter, and these
features account for more than 84 statistical attributes per flow (as shown in Table 3). Due to its
size, variety, and lifelike characteristics, it is an excellent dataset for testing DL-based cloud—
edge cybersecurity threat detection frameworks. The Training and Testing Split of the proposed
dataset is given in Table 2.
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Figure 3: Flowchart of proposed work
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Table 2: Training and Testing Split of CICIDS2017 Dataset

Category Class Flow Count Percentage (%) Training (70%) Testing (30%)
Benign Benign 2,273,097 76.75 1,591,167 681,929
DDoS DDoS 231,073 7.802 161,751 69,321
DoS Heartbleed 11 0.0003 7 3
DoS DoS Slowloris 5,796 0.1957 4,057 1,738
DoS DoS GoldenEye 10,293 0.3475 3,087 7,205
DoS DoS SlowHTTPTest 5,499 0.1856 3,849 1,649
DoS DoS Hulk 231,073 0.0392 161,751 69,321
Web Attack SQL Injection 5,796 0.2121 4,057 1,738
Web Attack Brute Force 7,938 0.2906 5,556 2,381
Web Attack XSS 5,897 0.2158 4,127 1,769
Infiltration Infiltration 10,293 0.3768 7,205 3,087
Port Scan Port Scan 158,930 5.8184 111,251 47,679
Brute Force FTP-Patator 1,769 0.2906 1,238 530
Brute Force SSH-Patator 5,897 0.2158 4,127 1,769
Bot Bot 1,966 0.0719 1,376 589

3.2 Data Pre-processing

The Data Pre-processing Layer plays a critical role in the deep learning pipeline by transforming
raw inputs into a suitable form for training, evaluation, and real-time inference [35]. The
structure and quality of the input data strongly influence the overall performance of deep
learning models. Effective preprocessing enhances model accuracy and reduces the risk of
overfitting, thereby improving generalization to unseen data. In the Smart-Trust Framework, this
layer processes raw network traffic, user activity records, and contextual data into meaningful
features that can be utilized by deep learning models, including hybrid architectures such as
CNN, LSTM, and GRU. The preprocessing stage involves operations such as data normalization,
feature extraction, sequential data arrangement, and encoding of categorical attributes [36,37].
Figure 4 illustrates the architecture of the data pre-processing layer.
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e Data Cleaning

Data cleaning steps remove noise, duplicates, and missing values with the goal of improving data
quality. Incomplete entries are changed via statistical imputation, thus ensuring that DL. models
can be trained effectively in a consistent and reliable manner.
_ {3?, x; missing
i = x;, otherwise

e Data Encoding

Data encoding changes categorical attributes into numerical representations through one-hot or
label encoding, which makes it possible for neural networks to process protocol types, services,
and flags without the need for ordinal bias to be introduced.

- [0,0, ...,1, ...,0]

e Feature Engineering

Feature engineering takes relevant features like packet rate and flow duration, selects and
transforms them to lower the dimensionality while increasing the discriminative power for
accurate cyber-security threat detection.

p(f,y)

MI(,Y) = ) pU Wlog st
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Table 3: 84 Feature attributes

Feature Name

Feature Name

Feature Name

Feature Name

Flow ID

Source IP
Source Port
Destination [P
Destination Port
Protocol

Timestamp

Flow Duration
Total Fwd Packets
Total Backward Packets

Total
Packets

Length of Fwd

Total
Packets

Length of Bwd

Fwd Packet Length Max
Fwd Packet Length Min
Fwd Packet Length Mean
Fwd Packet Length Std
Bwd Packet Length Max
Bwd Packet Length Min
Bwd Packet Length Mean

Bwd Packet Length Std

Flow Bytes/s

Flow Packets/s
Flow IAT Mean
Flow IAT Std
Flow IAT Max
Flow IAT Min
Fwd IAT Total
Fwd IAT Mean

Fwd IAT Std
Fwd IAT Max
Fwd IAT Min
Bwd IAT Total

Bwd IAT Mean

Bwd IAT Std
Bwd IAT Max
Bwd IAT Min
Fwd PSH Flags
Bwd PSH Flags
Fwd URG Flags
Bwd URG Flags

Fwd
Length

Bwd
Length

Header

Fwd Packets/s

Bwd Packets/s

Min Packet Length
Max Packet Length
Packet Length Mean
Packet Length Std

Packet
Variance

Length

FIN Flag Count

SYN Flag Count
RST Flag Count
PSH Flag Count

ACK Flag Count

URG Flag Count

CWE Flag Count

ECE Flag Count
Down/Up Ratio
Average Packet Size
Avg Fwd Segment Size

Avg Bwd Segment
Size

Fwd Header Length

Header Fwd Avg Bytes/Bulk

Fwd Avg Packets/Bulk
Fwd Avg Bulk Rate
Bwd Avg Bytes/Bulk
Bwd Avg Packets/Bulk
Bwd Avg Bulk Rate
Subflow Fwd Packets
Subflow Fwd Bytes

Subflow Bwd Packets
Subflow Bwd Bytes

Init Win_bytes_forward
Init Win_bytes backward

act data pkt fwd

min_seg size forward
Active Mean

Active Std

Active Max

Active Min

Idle Mean

Idle Std

Idle Max

Idle Min
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e Class Label Mapping

Class label mapping takes fine-grained attack labels and puts them into a standardized category
in order to simplify the classification task and enhance model generalization over different types
of attacks as well as more normal patterns of network traffic.

y'=90), ye€f1..,C}
e Feature Scaling

Feature scaling normalizes numerical attributes to a common range through either
standardization or min—max normalization, thus avoiding the problem of features with high
magnitudes dominating the others and making the neural network converge faster when training.

' X — Xmin
X =

Xmax — Xmin
e Class Imbalance Handling

Class imbalance handling uses resampling or cost-sensitive methods to make the minority and
majority classes equal, thereby increasing the identification of rare cyber-attacks and lessening
the bias towards normal traffic samples.

Xnew = X; + A(x; — x;),2 € (0,1)
3.3 Deep Learning Model

e CNN, LSTM and GRU

Fundamentally, “Convolutional Neural Networks (CNN)”, “Long Short-Term Memory
(LSTM)”, and “Gated Recurrent Units (GRU)” are DL architectures of significant power and
complexity, which are mainly utilized in threats to Upgrade Security in the network [38]. CNNs
are very effective in pulling out spatial features from network traffic data through the
identification of local patterns and correlations in input sequences like packet headers or flow
characteristics. As a result, it becomes on the lookout for abnormal behaviors and attack
signatures. Moreover, LSTM networks, which are a form of recurrent neural networks (RNNs),
are capable of remembering long-term relationships in the temporal side of sequential data,
hence they are able to recognize the patterns of network intrusions which are gradually changing
over time [39]. Memory cells address the vanishing gradient problem and can accurately learn
from past dependencies. “Gated recurrent unit (GRU)” networks further simplify the memory
cell mechanism by combining the forget gate and the input gate into a single update gate, which
allows for faster computation without sacrificing accuracy. GRU networks are highly beneficial
in dynamic and complex network settings with limited computational resources [40]. In this way,
when they are used together, CNN extracts spatial features, while LSTM and GRU provide
temporal and sequential relationships. In this way, the hybrid model can detect both known and
unknown intrusions to a high degree of accuracy. In combination, they can improve intrusion
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detection accuracy, reduce false alarms, and increase the resilience of cyber security against
threats to an evolving environment [41]. Figure 5 shows the architecture of CNN, LSTM, and

GRU.
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Figure 5: Architecture of CNN, LSTM, and GRU

e CNN-LSTM-GRU

The CNN-LSTM-GRU is a hybrid model that is effective in capturing both spatial and temporal
information in sequential data. This model has the advantages of convolutional and recurrent
neural networks. The CNN layer finds significant features and local spatial patterns based on
input data such as signals, pictures or time series sequences. Afterward, the LSTM-layer acquires
long-term dependencies and thus maintains sequential relationships but reduces the problem of
vanishing gradients. GRU layer further simplifies temporal learning by requiring less parameters,
training better and generalizing better. The CNN-LSTM-GRU pipeline can be formally described
as:

LSTM cell equations:
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fe = o(Wrx; + Ughi_q + by)
ip = o(Wix, + Uihe—y + by)
o = o(Wox¢ + Ushe—1 + by)
¢y = tanh (W,x, + U .hy_4 + b.)
=01+t O
hs = o, O tanh (c;)
GRU cell equations:
z¢ = o(Wpxy + Uzhe—q + by)
1y = o(Wyxy + Uphe—1 + by)
he = tanh (Wpxe + Up (1 O he_q) + by)
he=(1—-2)OQh1+2,Oh

Tasks like intrusion detection, voice recognition, healthcare monitoring, and financial time-series
forecasting are much improved by this architecture, which also improves sequence modeling and
prediction accuracy [42].

3.4 Evaluation Metrics

The model's performance was evaluated using Equations (9)—(12), where Agccuracy> Flscore
Precision> and Ryecqy are the relevant variables [43,44].

o “TP (true positive): If the model predicts Norm, it is the accurate response.
o FP (false positive): If the model predicts Norm, the accurate response is Attack.
e TN (true negative): If the model predicts Attack and this is the right response.

o FN (false negative): If the model predicts Attack, the accurate response is Norm™.

Predicted Class

P N
True False
p |Positives Negatives
Actual (TP) (FN)
Class False True
N |Positives Negatives
(FP) (TN)

Figure 6: Confusion Matrix
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TN+TP
Accuracy = TP+FN+FP+TN )
Precision = — (8)
NA+FP
Recall = —2— 9)
FN+NA
F1 score = prrecisionx.r.ecall (10)
recall+precision

4. Results and Discussion

In this section, the experimental results of the proposed DL-based cloud-edge cyber-security
framework, and discuss them. Each of the models was executed and tested in Python
programming environment, and the data was preprocessed and model train and trained with the
help of the following libraries: TensorFlow, Keras, NumPy, and Scikit-learn. Binary and
multiclass intrusion detection was evaluated using the CICIDS2017. Accuracy, precision, recall,
F1-score, and confusion matrices, ROC, and Precision Recall curves were calculated to give a
detailed analysis. The findings are thoroughly discussed to bring out effectiveness of models,
comparative performance and robustness under varying attack conditions.

4.1 CNN

Figure 7 shows the performance of the CNN-based binary classifier training with the
CICIDS2017 dataset. The subfigure of the left gives the trends of accuracy with five epochs.
Accuracy of training is steadily growing, 0.9870 at epoch 0 and 0.9902 at epoch 4, and the
validation accuracy is growing as well, 0.9885 to 0.9899, which means that the learning
progresses steadily and the results are beneficial in terms of generalization. The right subfigure
shows the loss convergence, the training loss is reduced to 0.027, and the validation loss is
reduced to 0.023. The tight convergence between the training and validation curve indicates that
the model has been optimized and the performance is steady in all the epochs.
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Figure 7: CNN binary model accuracy and loss across training epochs..
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The Figure 8 shows how CNN-based multiclass classification model performs over 5 training
epochs. The accuracy plot shows that training accuracy is increasing with the epoch starting at
0.84 up to 0.89 and validation accuracy is also increasing starting at 0.89 up to 0.92, and this
implies that the model is learning effectively and generalizing better. The loss plot has steadily
decreased initially by 0.27 to 0.10 at the final epoch in an indication of a successful model
optimization. The loss in validation reduces to 0.22, with slight changes in mid epochs. Training
and validation curve disparity is also not high which indicates that convergence is stable and
overfitting decreases. In general, the findings qualify the strength and ability of CNN model in
multiclassification tasks.
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Figure 8: CNN multiclass model accuracy and loss across training epochs.

The figure 9 shows the results of a CNN model with binary and multiclass confusion matrices. In
the binary classification scenario, the model correctly labels 394833 benign samples and 63379
attack samples. False alarms are also quite minimal with 631 benign cases falsely predicted as
attack (false positive) and 3,919 attack cases falsely predicted as benign (false negative), which
shows great detection ability and discrimination between the classes. In the multiclass confusion
matrix, the diagonal dominance is an indication of true classification of multiple attack
categories and the highest value of true positive is benign class with 3.5 x 10 5 (approximately).
Some minor confusion is identified between close forms of attacks like DoS and Brute Force,
yet, overall, the misclassification is not significant, which proves the restrictiveness and
scalability of the CNN to multi-category intrusion detection.
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Figure 9: CNN confusion matrices for binary and multiclass intrusion detection.

The performance evaluation of the CNN-based binary intrusion detection model is illustrated in
figure 10 through Precision-Recall (PR) and Receiver Operating Characteristic (ROC) curves.
The PR curve shows that the model consistently achieves high precision across almost the whole
range of recall, meaning that it has a very low false-positive rate even when the recall is high.
The average precision (AP) score of 0.9967 is an indication of the model’s excellent
performance in detecting attack instances in the case of an imbalanced dataset. The ROC curve
also supports the strong classifier, gaining an AUC of 0.9993, which is very close to 1, the ideal
value. The curve is consistently near the top-left corner, showing that there is an outstanding
separation between the two classes (benign and attack) with a very low number of false alarms
and a high true positive rate.

CNN Binary - Precision-Recall Curve CNN Binary - ROC Curve
10 \ 1011
08 0.8
&
©
s o 0.6 4
& 00 1
o @
s
£ 2 54
‘ o 0.4
0.4 { E
‘ 02
021 ap=09967 “ T AC = 19993
9.35 ' 0.04
0.0 0.2 04 06 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Recall False Positive Rate

Figure 10: PR and ROC curves of the CNN binary intrusion detection model.
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4.2 LSTM

The training and validation results of a binary classification LSTM model in terms of loss and
accuracy during various epochs are depicted in the figure 11. The accuracy curve shows regular
increase and the accuracy of training improved with time; at epoch 0, the accuracy was 96.5
percent but at epoch 4 the accuracy has improved to approximately 98.8 percent. In the same
manner, the accuracy of validation becomes 97.1 to almost 99.0, which exhibits high
generalization. The loss plots show that the training loss decreases steadily with increasing
epochs, the training loss declines to about 0.115 and validation loss declines to about 0.034. The
fact that the training and validation curves come close indicates that there is no drastic change in
learning behavior and there is low overfitting. On the whole, the findings demonstrate good
model convergence with a high level of accuracy and minimal loss in a limited number of
training cycles.
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Figure 11: Training and validation accuracy and loss of the LSTM binary classification model.

Figure 12 shows the performance of the LSTM-based multiclass classification model in training
and validation over five epochs. The training accuracy rises steeply from 70% at epoch 0 to
about 81% by epoch 1, peaking at roughly 84% in epoch 2 with some minor fluctuations
afterward and settling close to 83% at epoch 4. Validation accuracy starts relatively high, around
84%, then slightly drops to about 83% by epoch one before more significantly declining down to
roughly 76% at epoch two; it recovers almost fully back up to near 80% by the fourth epoch. The
loss curves indicate that training loss decreases from approximately 0.55 through the second
epoch but then increases slightly up to 0.31 while validation loss generally trends downwards
from 0.61 toward something close to 0.47, indicating learning has taken place with moderate
class-wise variability.

29



International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 8, Issue No. 1, pp 13 - 44, 2026

www.carljournals.org

0.84
//‘.-;‘\.
G 3 2 ~ e ® o644
0.82 = S~ 0.6
r 1
.80 N\
/ . \
/ 0571 \
\

o 078 / \
a “ \'\
2 / q \
§ 076 // 3 el \

074 / \

/ \
/ \ —_—
0.3 r— * |
072 / \ -
/ @~ Traming Accuracy | . o &~ Training Loss
0.70 ‘ Vabdation Accuracy s 1 #- Validatan Loss
— T T T ™ 032 T T
a0 0 10 1.5 7.0 25 30 33 40 0.0 Q5 1.0 3 0

LSTM Multiclass - Accuracy

Epoch

LSTM Multiclass - Loss

20 .5

Epoch

3.3

40

Figure 12: Training and validation accuracy and loss of the LSTM multiclass classification model

The illustration in Figure 13 shows the LSTM model performance through binary and multiclass
confusion matrices. The binary classification matrix shows the model achieves perfect
identification for 394,468 benign samples and 63,468 attack samples which demonstrates its high
classification performance. The system makes two types of errors: 996 benign cases get flagged
as attacks (false positives) while 3,830 attack cases pass through as non-intrusions (false
negatives). The multiclass confusion matrix shows the prediction results for each class on a
logarithmic scale which includes Benign, Botnet, Brute Force, DoS, Infiltration, PortScan and
WebAttack categories. Strong diagonal dominance is observed, particularly for Benign and DoS
classes, signifying high correct classification rates. The model shows slight confusion between
Botnet and Brute Force and PortScan attacks but its overall performance stays strong for
multiclass intrusion detection.
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Figure 13: Binary and multiclass confusion matrices of the LSTM model for intrusion detection.

The values 14 show the analysis of the LSTM-based binary classification model on PR and ROC
curves. The PR curve is steady in high precision throughout nearly the most of the recall which is
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only slightly reduced at the full recall which is a sign of effective attack detection with minimum
false positive rate. The value of the Average Precision (AP) of 0.9936 proves that the model is
working well with a lack of balance in data. The ROC curve also exhibits a high level of
discriminatory ability with an Area Under the Curve (AUC) of 0.9986 that is very near to the
theoretical figure of 1. The curve is still close to the top-left side indicating a high true positive
and a very low rate of false positive. In general, the findings suggest that the LSTM mechanism
is able to deliver very much accurate and strong binary classification results.
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Figure 14: PR and ROC curves of the LSTM binary classification model.
4.3 GRU

Figure 15 shows the training and validation results of the binary classification using GRU model
in accuracy and loss per epoch. Accuracy plot indicates that convergence is rapid where the
training accuracy at epoch 0 is around 96.2% which is raised to 99.0% at epoch 4. Similar is the
case of validation accuracy which increased to about 97.6 to almost 99.0 and this shows high
generalization. The loss curves show a steady decrease with epochs, with training loss falling
between 0.112 and 0.028, and validation loss falling between 0.072 and 0.025. The fact that the
training and validation measures are close implies that learning behavior is stable, and overfitting
is minimal. In general, the GRU model obtains high precision and low loss in few training
epochs, which show that it is an efficient model to use in a binary classification task.
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Figure 15: Training and validation accuracy and loss of the GRU binary classification model.

The training and validation performance of the GRU based multiclass classification model is
provided in the figure 16 in terms of five epochs. The accuracy of training is continuously
improving with an overall process of improving to a high level of about 59 percent at epoch 0
improving to about 75 percent at epoch 1, and 82 percent at epoch 2 and then finally 87 percent
at epoch 4. The validation accuracy begins approximately at 66% and increases sharply to almost
88% at epoch 1 and slightly to approximately 91% at epoch 4 which means that there is good
generalization to various classes. The loss curves show a steady decline whereby the training loss
declines as well as validation loss declines respectively as 0.67 and 0.92. The small changes in
validation loss indicate that there is variability in the classification per class, but the convergence
in general proves the power of the GRU model to classify in multiclass classification.
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Figure 16: Training and validation accuracy and loss of the GRU multiclass classification model.

This figure 17 shows the results of the GRU-based model in binary and multiclass confusion
matrices. The model is very accurate on detecting benign samples since it correctly classifies
394,420 samples and 63,836 attack samples in the binary confusion matrix. There is also a low
level of misclassification (1,044 benign false positives and 3,462 attack false positives and false
negatives). The multiclass confusion matrix presented in a logarithmic scale, illustrates the
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behavior of the prediction by classes on a category of Benign, Botnet, Brute Force, DoS,
Infiltration, PortScan, and WebAttack. Good diagonal dominance is detected especially in the
Benign and DoS classes and this means that the classification is reliable. There is some
confusion that is observed between the related types of attack such as Botnet, Brute force and
PortScan, the overall misclassification is not very high, which confirms that the GRU model is
beneficial and efficient in intrusion detection both binary and multi-class.
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Figure 17: Binary and multiclass confusion matrices of the GRU model for intrusion detection.

Figure 18 shows how well the GRU-based binary classification model works using PR and ROC
curves. The PR curve shows that the precision is high over almost all the recall range, with just a
small drop near full recall, meaning it can reliably detect attack instances with very few false
positives. The Average Precision score of 0.9955 means strong classification performance,
especially under class imbalance. The ROC curve further illustrates this by giving an AUC of
0.9990, which is very close to the ideal value of 1; here, the curve stays concentrated near the
top-left corner, indicating a high true positive rate at a very low false positive rate. Results
confirm the robustness and effectiveness of the GRU model for binary intrusion detection tasks.
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Figure 18: PR and ROC curves of the GRU binary classification model.
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4.4 Hybrid Model of CNN+LSTM+GRU

The graph 19 shows the training and validation performance of the hybrid CNNLSTMGRU
binary classification model in terms of loss and accuracy in five epochs. The loss curves indicate
a quick decrease in training and validation loss values over the 4 epochs, training loss at epoch 0
is approximately 0.060 and at the 4th epoch it is approximately 0.023, and validation loss at
epoch 0 is approximately 0.039 and at epoch 4 is approximately 0.020 which indicate that
learning has been stabilized and overfitting is limited. The accuracy plot indicates steady
improvement where the training accuracy grows by approximately 98.1 percent to almost 99.2
percent, and validation accuracy by approximately 98.7 percent to close to 99.3 percent across
the training epochs. High generalization is emphasized by the fact that training and validation
measures are closely correlated. In general, the hybrid CNN-LSTM-GRU model has high
precision and the loss is low, and it proves to be effective in the task of binary classification.
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Figure 19: Training and validation accuracy and loss of the hybrid CNN-LSTM-GRU binary model.

The figure 20 presents the training and validation performance of the hybrid CNN-LSTM—-GRU
multiclass classification model across five epochs. The training accuracy shows a steady increase
from approximately 73% at epoch 0 to about 86% at epoch 1, reaching nearly 89% at epoch 3
and stabilizing around 89-90% by epoch 4. Validation accuracy starts high at around 91%, peaks
at approximately 95% at epoch 1, slightly decreases to 91% at epoch 2, and then recovers to
nearly 93% at epoch 4, indicating good generalization across multiple classes. The loss curves
demonstrate consistent convergence, with training loss decreasing from roughly 0.43 to 0.14,
while validation loss reduces from about 0.33 to approximately 0.22. Minor fluctuations in
validation loss suggest class-wise variability, but overall trends confirm effective learning and
stable multiclass performance of the hybrid model.
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Figure 20: Training and validation accuracy and loss of the hybrid CNN-LSTM—GRU multiclass model.

This figure 21 shows the performance of the hybrid CNN-LSTM-GRU model on binary and
multiclass confusion matrices. The model distinguishes correctly 394,924 benign samples and
64,367 attack samples in the binary classification matrix which means that it has high detection
accuracy. There is also low misclassification with only 540 benign cases being wrongly
predicted as attacks (false positives) and 2,931 attack cases being wrongly predicted as benign
cases (false negatives). The multiclass confusion matrix, which is presented in the form of a
logarithmic-scaled table, depicts great dominance of the diagonal among classes and Benign,
Botnet, Brute Force, DoS, Infiltration, PortScan, and WebAttack, which are correct predictions
made by classes. There are some high counts of correct classification in the DoS and Benign
categories. Minimal confusion is witnessed between related types of attacks, particularly
between Botnet and Brute Force, but generally the error rates are low, which proves the strength
and stability of the hybrid model in binary and multiclass intrusion detection.
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Figure 21: Binary and multiclass confusion matrices of the hybrid CNN-LSTM—-GRU model.

The figure 22 provides the PR curve of the hybrid CNN-LSTM-GRU binary classification. Most
recall values lie close to the upper limit of the curve thus meaning that the precision is also high
over a large degree of recall. This performance shows that the model was highly accurate in
detecting attack cases and it has a very low false positive. The aforementioned classifier results
0f 0.9972 on the reported Average Precision (AP) demonstrate that the classification is excellent,
especially in the conditions of class imbalance. Minor loss in accuracy occurs only at test limits
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of full recall which is common at detection sensitivity maximization. All in all, the PR curve
shows that the hybrid model is robust and reliable in detecting binary intrusions.
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Figure 22: Precision—Recall curve of the hybrid CNN-LSTM—GRU binary model.

The chart 23 below shows how well the hybrid multiclass model did for each class using
precision, recall, and F1-score. For precision, the Benign class had a perfect score of 1.00; DoS
had 0.85 and Brute Force has moderate precision at 0.45. Botnet (0.04), PortScan (0.15),
WebAttack (0.06), and very low values for Infiltration and Other have near zero values which
means more false positives for these classes are indicated by lower precision values. Recall
values are high with other (1.00), DoS (0.98), Brute Force (0.97), PortScan (0.96), and
WebAttack (0.93) while Infiltration has relatively lower recall at 0.71; this is reflected in the F1-
scores that show good balance with strong performances from Benign (0.96) and DoS (0.91),
moderate from Brute Force (0.62), and lower scores from minority attack classes indicating
effects of class imbalances.
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Figure 23: Per-class precision, recall, and F1-score of the hybrid multiclass model.

The given figure 24 represents the ROC curve for the binary classification CNN-LSTM-GRU
hybrid model. The curve lies close to the top-left corner, thereby substantiating robust
discrimination between the classes of benign examples and attack examples. The obtained Area
Under Curve (AUC) is 0.9994, which is nearly equal to 1. It confirms near-excellent
performance of classification. The high value of true positive rate is preserved even for a low
value of false positive rate, thereby validating effective detection of attacks. The diagonal line in
the figure denotes random classification. The large gap between the ROC curve of the developed
model and the diagonal line for random classification ensures robustness of the model for binary
classifications in intrusion detection.
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Figure 24: ROC curve of the hybrid CNN-LSTM-GRU binary classification model.

The bar graph 25 illustrates the evaluation of AUC values for different models employed in
binary intrusion detection. The CNN model receives a very high score of 0.99931 in terms of
AUC, denoting a great ability to differentiate. The LSTM model is not far behind with an AUC
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0f 0.99856, which means that there is still a strong but less powerful performance than that of the
previous model. The GRU model, taking advantage of the LSTM model, the learning of time-
based features, and thus being able to get an AUC 0f 0.99902, is a little stronger than LSTM. The
hybrid CNN-LSTM-GRU model gets the highest AUC of 0.99941, beating all single
architectures. The close spread of AUC values, which are all above 0.998, ensures that the
performance of each model is excellent; however, the hybrid technique gives the most powerful
classification with the best true positive and false positive balance. This comparison emphasizes
the benefit of using a combination of spatial and temporal feature extraction for binary intrusion
detection.
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Figure 25: Comparison of AUC values for binary intrusion detection models.

The figure 26 presents model accuracies for binary and multiclass classification tasks in intrusion
detection scenarios. For binary classification, model accuracies are nearly equal to 1, with CNN
at 99.10%, LSTM at 98.95%, GRU at 99.00%, and the hybrid CNN-LSTM-GRU model
achieving the highest accuracy of 99.24%. In the multiclass scenario, accuracy values are lower
due to increased class complexity: CNN attains 91.93%, LSTM has the lowest multiclass
accuracy of 80.28%, GRU reaches up to 92.36%, and again, the hybrid model leads all others
with an accuracy of 93.35%. Results indicate both the hybrid approach's superiority as a practical
choice and how different binary versus multiclass intrusion detection tasks affect performances.
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Figure 26: Binary and multiclass accuracy comparison of intrusion detection models.

The table 4 below presents a summary of recent intrusion detection studies by model, dataset,
and accuracy. Santhadevi et al. (2023) applied a CNN—Stacked LSTM model to the NBaloT
dataset and achieved 97.39% accuracy, which demonstrates good feature learning for IoT traffic.
Akinbolaji et al. (2024) used hybrid CNN and RNN architecture on the KDD Cup 1999 dataset
with reported accuracy of 95%. Farzaan et al. (2025) implemented a Random Forest classifier on
the NSL-KDD dataset to achieve 90% accuracy. Ethan et al. (2024) fused CNN, LSTM, and
Transformer models using the CICIDS2017 dataset with an attained accuracy of 97.2%. The
proposed CNN-LSTM-GRU model tested over the same CICIDS2017 dataset outperforms all
previous proposals at a maximum recorded accuracy of 99.24%, proving its usability in intrusion
detection applications. The figure illustrates the accuracy comparison of various intrusion
detection models, with the CNN-LSTM—GRU model achieving the highest performance.

Table 4: Comparison of intrusion detection models and their classification accuracy.

Authors [Reference] Model Datasets Accuracy
Authors (Year) [Ref.] Model Dataset Accuracy (%)
Santhadevi et al. (2023) [45] CNN-Stacked LSTM NBaloT 97.39
Akinbolaji et al. (2024) [46] CNN and RNN KDD Cup 1999 95.00
Farzaan et al. (2025) [47] Random Forest NSL-KDD 90.00
Ethan et al. (2024) [48] CNN + LSTM + CICIDS2017 97.20
Transformer
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Figure 27: Comparison graph of different intrusion detection models.
5. Conclusion and Future Scope

The findings of this study provide important theoretical contributions to the field of
cybersecurity and intelligent systems. From a practical perspective the proposed cloud edge deep
learning framework offers a viable and deployable solution for real time cybersecurity threat
detection in modern network environments. The study also carries important policy implications
for cybersecurity governance and digital infrastructure regulation. Policymakers and regulatory
bodies can leverage the findings to promote the adoption of artificial intelligence driven security
mechanisms as part of national and organizational cybersecurity strategies. Based on the findings
future research should focus on integrating federated learning techniques to enhance data privacy
and reduce dependency on centralized data storage. Incorporating explainable deep learning
methods would further improve transparency and trust in automated intrusion detection
decisions. Additionally, evaluating the framework on more recent and diverse datasets as well as
testing its performance in real world operational environments would strengthen its applicability
and robustness. These enhancements would further position the proposed framework as a
scalable trustworthy and adaptive solution for next generation cloud edge cybersecurity systems..
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