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Abstract
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Purpose: This study aims to enhance DC bus voltage regulation and battery operation reliability
in a large-scale hybrid residential microgrid through an intelligent predictive control approach.

Methodology: A hierarchical control framework is proposed in which a Nonlinear Autoregressive
Moving Average with Exogenous Inputs (NARMA-L2) neural network is implemented as a
secondary predictive controller for DC bus voltage regulation and battery management. The
controller is designed to learn the inverse dynamics of the DC bus—battery system and anticipate
voltage disturbances caused by renewable variability and load changes. The framework is applied
to a redesigned hybrid residential microgrid supplying a high-consumption villa in Jeddah, Saudi
Arabia, comprising a 40 kW photovoltaic array, a 15 kW wind turbine, and a 100 kwWh lithium-
ion Battery Energy Storage System (BESS), serving a daily energy demand of 177.5 kWh.
Performance evaluation is conducted using MATLAB/Simulink under realistic environmental and
load profiles representative of Jeddah conditions.

Findings: Simulation results demonstrate that the proposed NARMA-L2-based control strategy
significantly improves DC bus voltage stability compared to a conventional PI controller. The DC
bus voltage Root Mean Square Error (RMSE) is reduced by approximately 68% (from 3.15 V to
1.01 V), and voltage recovery time is improved by over 7%. In addition, the enhanced generation
capacity and predictive control framework increase renewable energy utilization by about 12%,
while maintaining battery State-of-Charge (SOC) within safe operating limits and ensuring stable
power balance.

Unique Contribution to Theory, Practice, and Policy: This study provides practical evidence
of the effectiveness of neural network-based predictive control for voltage stabilization in large-
scale residential microgrids. The proposed framework bridges the gap between conventional rule-
based controllers and intelligent data-driven control strategies, offering a scalable solution for
high-demand residential applications. From a policy perspective, the results support the
deployment of advanced control technologies as a key enabler for resilient residential microgrids
aligned with Saudi Vision 2030 sustainability objectives.

Keywords: DC Microgrid, Voltage Stability, NARMA-L2 Neural Network, Battery Energy
Storage System
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1. Introduction

The global energy transition toward sustainable, decentralized networks based on renewable
energy sources (RES) is accelerating, particularly in regions with ambitious climate and energy
diversification goals. Saudi Arabia’'s Vision 2030 emphasizes renewable energy integration and
artificial intelligence (Al) as key pillars for modernizing its energy infrastructure [1][2].
Residential sectors in coastal cities like Jeddah represent critical implementation areas due to high
energy demands driven by air-conditioning requirements and rapid urbanization [3]. Large-scale
hybrid microgrids, integrating substantial solar photovoltaics (PV), wind turbines, and Battery
Energy Storage Systems (BESS), offer enhanced solutions for energy resilience and independence
but introduce amplified control challenges due to increased generation variability.

The expanded capacity of renewable sources in such systems—while beneficial for energy
security—exacerbates the challenge of maintaining stable DC bus voltage. Solar irradiance and
wind speed fluctuations create larger power output variations that can lead to severe voltage
disturbances on the common DC bus. Stable DC bus voltage is essential for converter reliability,
load protection, and BESS health. Traditional Proportional-Integral (P1) controllers, with their
fixed-gain linear approach, become increasingly inadequate for these high-capacity, nonlinear
systems, often exhibiting slow response, significant oscillations, and poor disturbance rejection
[4].

Artificial Neural Networks (ANNSs) have demonstrated significant potential for complex nonlinear
control problems. Their data-driven learning capability and adaptability make them suitable for
microgrid applications. While ANNs have been applied to Maximum Power Point Tracking
(MPPT) and energy management, there remains a gap in dedicated predictive neural control for
DC bus stabilization in large-scale residential microgrids with enhanced generation capacity[5].

This paper addresses this gap by proposing and validating a neural network-based predictive
control framework for a redesigned, larger-capacity microgrid. The system has been upgraded to
a 40 kW PV array and 15 kW wind turbine to better match the load profile and provide additional
generation margin. The core innovation is the deployment of a NARMA-L2 neural network as a
predictive secondary controller. This recurrent network models the inverse dynamics of the DC
bus-BESS system, enabling proactive voltage stabilization rather than reactive correction.

The primary objectives of this work are:

1. To design and validate a hierarchical control framework integrating a NARMA-L2
predictive controller for a large-scale residential microgrid with 40 kW PV and 15 kW
wind capacity.

2. To quantitatively evaluate the controller's performance against conventional Pl control
under realistic variable conditions, focusing on enhanced generation scenarios.
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3. To demonstrate improved renewable energy utilization and system stability with the
expanded configuration.

2. Literature Review
2.1 Large-scale Microgrid Control Challenges

The scaling of renewable capacity in microgrids introduces unique challenges. Larger PV arrays
and wind turbines increase the magnitude of power fluctuations, requiring more sophisticated
voltage regulation strategies. Studies on large-scale residential systems in Saudi Arabia have
focused primarily on techno-economic sizing [6] rather than advanced control solutions for the
resulting dynamic challenges.

2.2 Intelligent Control for Enhanced Systems

Recent research has explored Al applications in microgrids, but few address the specific needs of
scaled-up residential systems. Reinforcement learning has been applied to energy management in
interconnected systems [7], while neural-fuzzy optimization has shown promise for efficiency
improvements (Wang et al., 2024). However, these approaches often operate at slower timescales
unsuitable for direct voltage control.

2.3 Voltage Control Advancements

For voltage regulation, advanced methods beyond conventional Pl control have been investigated.
Sliding Mode Control offers robustness but can cause chattering in large systems [9]. Explicit
neural networks have been applied to secondary voltage control with stability guarantees [8], but
their application to large-scale residential systems with significant generation variability remains
limited.

2.4 Research Gap and Contribution

Existing literature lacks comprehensive studies on predictive neural control for large-scale
residential microgrids with enhanced renewable capacity (40+ kW PV, 15+ kW wind). Most
research focuses on either smaller systems or higher-level optimization without addressing the
intensified voltage stability challenges of scaled generation.

This paper contributes by:

1. Proposing a predictive NARMA-L2 neural network controller specifically designed for
large-scale residential microgrids with 40 kwW PV and 15 kW wind capacity.

2. Providing enhanced system modeling and sizing methodology for high-capacity residential
applications in coastal Saudi Arabia.

3. Demonstrating quantitative performance improvements in both voltage stability and
renewable utilization with the expanded system configuration.
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3. Enhanced System Description and Mathematical Modeling
3.1 System Study and Optimal Sizing

The current section defines the study site, the estimation of residential energy demand and optimal
sizing of a stand-alone renewable energy system submitted by photovoltaic (PV) panels, wind
turbines and battery storage, as shown in Figure 1.
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—

Figure 1: Architecture of the Microgrid
Based on enhanced resource assessment for increased reliability and generation margin:

Table 1: Enhanced Microgrid Component Sizing

Component  Enhanced Capacity Rationale

PV Array 40 kW Additional margin for cloudy days, aging degradation
Wind Turbine 15 kW Better night-time coverage, redundancy

BESS 100 kWh Maintained for 10-hour autonomy

Daily Load 177.5 kWh Unchanged residential profile

The enhanced microgrid component sizing adopted in this study, including the 40 kW PV array,
15 kW wind turbine, and 100 kWh battery energy storage system, is summarized in Table 1.

The 40 kW PV array comprises approximately 133 modules of 300W each. The 15 kW wind
system utilizes three 5 kW turbines for improved reliability. This configuration increases the
renewable penetration ratio from approximately 85% to 92% while maintaining the same 100 kWh
BESS for storage autonomy [10].
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3.2 Mathematical Modeling of Enhanced Components
3.2.1 Enhanced DC Bus Dynamics

The DC bus equation remains fundamentally the same but with larger generation components:

dav.
de
Chus 7T Loy a0kw + Lwind 156w + Tpatt — Load

where L, soxw aNd Lying 15w represent currents from the enhanced generation systems, leading
to larger magnitude fluctuations during transients.
3.2.2 Revised Power Converter Specifications

e PV Boost Converter (40 kW): Increased to 12 mH inductor and 0.4 mF capacitor to handle
higher power levels.

e Wind Converter (15 kW): Enhanced to 4 mH inductor and 0.3 mF capacitor.

e Battery Bidirectional Converter: Maintained at 6.3 mH inductance and 5 mF capacitor.

3.2.3 Control Problem Formulation for Enhanced System

The control objective remains voltage regulation: V. = V.. = 230V. However, the challenge
intensifies due to:

1. Larger disturbance magnitudes from enhanced generation sources
2. Increased rate-of-change of power during transients
3. More complex coordination between larger generation assets
4. Proposed Hierarchical Control Architecture for Enhanced System
4.1 Primary Control Layer Enhancements

e PV MLP-MPPT: Updated to 4-12-1 architecture to handle the expanded 40 kW array's
characteristics.

e Wind MLP-MPPT: Modified to 3-10-1 structure for the 15 kW system's dynamics.

e Current Controllers: Gain-scheduled PI controllers to handle wider operating ranges[11].

4.2 Secondary Control Layer: Enhanced NARMA-L2 Design
The NARMA-L2 controller is redesigned for the enhanced system:
Architecture: 3-18-1 structure with inputs:

1. DC bus voltage error (AV = Vycrer — Vac)

2. Battery State of Charge (SOC)
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3. Rate of change of total generation (d P, /dt)
Training Enhancement: The training dataset includes scenarios specific to large-scale systems:

e Partial shading on large PV arrays
e Gust-driven wind power spikes
e Simultaneous generation and load transients

4.3 Tertiary Control Layer: Enhanced EMS Logic
The EMS is updated with additional rules for the enhanced system:

e Priority-based curtailment for managing larger surpluses
e Predictive scheduling using generation forecasts
e Battery health optimization with reduced cycling frequency

Table 2: Enhanced Controller Specifications

Control Layer  Controller Enhanced Features

Primary PV MLP-MPPT 4-12-1 architecture, handles partial shading
Primary Wind MLP-MPPT 3-10-1, gust compensation

Secondary NARMA-L2 3-18-1, rate-based prediction

Tertiary EMS Priority curtailment, predictive scheduling

The detailed specifications of the proposed hierarchical control architecture and its associated
controllers are presented in Table 2.

At the tertiary control level, the focus shifts to global power flow coordination and system-level
energy management. This layer hosts the Energy Management System (EMS), which supervises
distributed generation units, storage devices, and load dispatch. Unlike predictive optimization
approaches, the EMS here operates strictly on real-time measurements of renewable generation,
load demand, and battery state-of-charge (SOC). By continuously monitoring these signals, it
executes switching and dispatch decisions that balance supply and demand while respecting
converter ratings and operational constraints[12][13].

Previous studies have demonstrated the effectiveness of artificial neural network (ANN)-based
hierarchical control frameworks in enhancing the operational performance of residential
microgrids. In particular, Bahabri et al. (2025) proposed a multi-layer intelligent control
architecture integrating ANN-based MPPT, battery management, and energy management
systems, achieving significant improvements in voltage regulation, renewable energy utilization,
and system stability under realistic operating conditions. These findings provide a strong
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foundation for the present work and motivate the extension toward predictive DC bus control for
higher-capacity hybrid residential microgrid configurations[14].

Recent studies have investigated hybrid renewable energy systems for marine applications.
Banawi et al. (2025) developed a wind-solar—fuel cell-battery integrated power system with Pl-
based energy management, demonstrating significant emission reduction and improved
operational stability for low-emission marine vessels in Saudi Arabia[15].

5. Simulation Setup and Performance Metrics for Enhanced System
5.1 Enhanced Test Scenarios
The simulation includes specific scenarios for the enhanced system:

1. 40 kW PV partial shading: 50% of array shaded at t=4.5s

2. 15 kW wind gust response: Wind speed spike from 4 to 8 m/s at t=6s
3. Simultaneous load step: 15 kW to 30 kW load increase at t=7s

4. Grid-forming operation: Islanded mode testing with large load steps

5.2 Additional Performance Metrics

Beyond the standard metrics, the enhanced system evaluation includes:

Beyond the standard metrics, the enhanced system evaluation includes:
1. Renewable Energy Utilization Factor (REUF):

Actual renewable energy used
REUF = . x 100%
Total available renewable energy

2. Large-disturbance rejection capability

3. BESS cycling reduction percentage
6. Results and Discussion for Enhanced System
6.1 Voltage Regulation with Enhanced Generation

Table 3: Enhanced Performance Comparison

Metric Pl Controller NARMA-L2 Controller Imorovement
(40/15 kW) (40/15 kW) P
Voltage RMSE (V) 3.15 1.01 68.0%
Settling Time after 50% 0
PV drop (ms) 520 180 65.4%
REUF (%) 83.5 92.8 11.1%
33.3%
BE I 4.2 2. .
SS cycles per day 8 reduction
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The quantitative performance comparison between the conventional PI controller and the proposed
NARMA-L2 controller is provided in Table 3.

6.2 Key Findings from Enhanced System

1.

Superior Large-disturbance Handling: The NARMA-L2 controller demonstrates
exceptional performance during the 15 kW wind gust event, maintaining voltage within
+3% of nominal compared to £8% with P control.

Improved Renewable Utilization: The enhanced 40/15 kW configuration with NARMA-
L2 control achieves 92.8% REUF, representing an 11% improvement over the PI-
controlled system and a 7% improvement over the original 36/10 kW configuration.
Reduced Battery Stress: Despite larger generation fluctuations, the predictive nature of
NARMA-L2 reduces daily battery cycles from 4.2 to 2.8, extending battery life by
approximately 30%.

Enhanced Transient Response: The controller's predictive capability allows it to anticipate
disturbances from the larger generation assets, resulting in faster and smoother voltage
recovery.

Table 4 outlines the EMS decisions during the five key time segments.

Interval (s) EMS Action Battery Operation Notes

0-2 Normal Charge Moderate surplus stored

2-4 Discharge Mode  Discharge Peak demand, battery supports load
4-6 Curtailment Charge High renewable surplus

6-8 Normal Discharge Load exceeds generation

8-10 Normal Charge Wind dominates at low load

The EMS operational decisions corresponding to different time intervals and operating conditions
are summarized in Table 4.

Figure 2 shows the load demand profile, which mimics a high-end residential consumption pattern,
peaking around midday and tapering off at night. This figure, when viewed in sequence with the
previous environmental data, sets the context for analysing generation-load alignment.

73



International Journal of Computing and Engineering
ISSN 2958-7425 (online)

Vol. 8, Issue No. 1, pp 66 - 77, 2026 Www.carijournals.org

25

20

151

10

Load Demand (kW)

2 a 6 8 10
Simulated Time (s)

Figure 2: Load Profile Scenario

Figure 3 shows the Energy Management System (EMS) control signals. These figures indicate the
real-time decision-making such as charging during generation surplus (e.g., 4-6 s) and discharging
during demand peaks (e.g., 24 s).

uel Cell Assist

Curtailment |

Normal |

1 2 3 4 5 6 7 8 9
Simulated Time (s)

Figure 3: EMS control signal
6.3 Economic and Reliability Implications

The enhanced 40/15 kW configuration provides:

e Increased reliability: 99.7% load availability vs. 99.2% in original system
e Reduced operational costs: Lower battery replacement costs due to reduced cycling
e Better grid services: Improved capability for grid support functions
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7. Conclusion and Future Work

7.1 Conclusion

This paper presented an enhanced hierarchical control framework for large-scale residential
microgrids, featuring a 40 kW PV array and 15 kW wind turbine configuration controlled by a
predictive NARMA-L2 neural network. The expanded system design addresses the increased
voltage stability challenges of high-capacity renewable integration while improving overall energy
utilization.

The key findings demonstrate:

Enhanced Performance: 68% improvement in voltage RMSE and 65% faster disturbance
rejection compared to PI control.

Increased Renewable Utilization: 92.8% renewable energy utilization factor, representing
optimal use of the expanded generation capacity.

Reduced Battery Stress: 33% reduction in daily charge cycles, extending system lifespan.
Superior Scalability: The framework effectively handles the amplified dynamics of large-
scale residential systems.

This research validates that neural network-based predictive control is essential for realizing the
full potential of large-scale residential microgrids, particularly in regions like Saudi Arabia
pursuing aggressive renewable energy targets.

7.2 Future Work

1.

Multi-microgrid Coordination: Extend the framework to coordinate multiple enhanced
residential microgrids in a community setting.

Hardware Implementation: Deploy the enhanced 40/15 kW system with NARMA-L2
control in a pilot residential installation in Jeddah.

Adaptive Sizing Algorithm: Develop an Al-based sizing tool that dynamically
recommends PV/wind ratios based on historical data and control capabilities.
Cybersecurity Integration: Implement blockchain-based secure communication for the
enhanced control system's data exchanges.
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