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Abstract 

Purpose: This study aims to enhance DC bus voltage regulation and battery operation reliability 

in a large-scale hybrid residential microgrid through an intelligent predictive control approach. 

Methodology: A hierarchical control framework is proposed in which a Nonlinear Autoregressive 

Moving Average with Exogenous Inputs (NARMA-L2) neural network is implemented as a 

secondary predictive controller for DC bus voltage regulation and battery management. The 

controller is designed to learn the inverse dynamics of the DC bus–battery system and anticipate 

voltage disturbances caused by renewable variability and load changes. The framework is applied 

to a redesigned hybrid residential microgrid supplying a high-consumption villa in Jeddah, Saudi 

Arabia, comprising a 40 kW photovoltaic array, a 15 kW wind turbine, and a 100 kWh lithium-

ion Battery Energy Storage System (BESS), serving a daily energy demand of 177.5 kWh. 

Performance evaluation is conducted using MATLAB/Simulink under realistic environmental and 

load profiles representative of Jeddah conditions. 

Findings: Simulation results demonstrate that the proposed NARMA-L2-based control strategy 

significantly improves DC bus voltage stability compared to a conventional PI controller. The DC 

bus voltage Root Mean Square Error (RMSE) is reduced by approximately 68% (from 3.15 V to 

1.01 V), and voltage recovery time is improved by over 7%. In addition, the enhanced generation 

capacity and predictive control framework increase renewable energy utilization by about 12%, 

while maintaining battery State-of-Charge (SOC) within safe operating limits and ensuring stable 

power balance. 

Unique Contribution to Theory, Practice, and Policy: This study provides practical evidence 

of the effectiveness of neural network-based predictive control for voltage stabilization in large-

scale residential microgrids. The proposed framework bridges the gap between conventional rule-

based controllers and intelligent data-driven control strategies, offering a scalable solution for 

high-demand residential applications. From a policy perspective, the results support the 

deployment of advanced control technologies as a key enabler for resilient residential microgrids 

aligned with Saudi Vision 2030 sustainability objectives. 

Keywords: DC Microgrid, Voltage Stability, NARMA-L2 Neural Network, Battery Energy 

Storage System  
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1. Introduction 

The global energy transition toward sustainable, decentralized networks based on renewable 

energy sources (RES) is accelerating, particularly in regions with ambitious climate and energy 

diversification goals. Saudi Arabia's Vision 2030 emphasizes renewable energy integration and 

artificial intelligence (AI) as key pillars for modernizing its energy infrastructure [1][2]. 

Residential sectors in coastal cities like Jeddah represent critical implementation areas due to high 

energy demands driven by air-conditioning requirements and rapid urbanization [3]. Large-scale 

hybrid microgrids, integrating substantial solar photovoltaics (PV), wind turbines, and Battery 

Energy Storage Systems (BESS), offer enhanced solutions for energy resilience and independence 

but introduce amplified control challenges due to increased generation variability. 

The expanded capacity of renewable sources in such systems—while beneficial for energy 

security—exacerbates the challenge of maintaining stable DC bus voltage. Solar irradiance and 

wind speed fluctuations create larger power output variations that can lead to severe voltage 

disturbances on the common DC bus. Stable DC bus voltage is essential for converter reliability, 

load protection, and BESS health. Traditional Proportional-Integral (PI) controllers, with their 

fixed-gain linear approach, become increasingly inadequate for these high-capacity, nonlinear 

systems, often exhibiting slow response, significant oscillations, and poor disturbance rejection 

[4]. 

Artificial Neural Networks (ANNs) have demonstrated significant potential for complex nonlinear 

control problems. Their data-driven learning capability and adaptability make them suitable for 

microgrid applications. While ANNs have been applied to Maximum Power Point Tracking 

(MPPT) and energy management, there remains a gap in dedicated predictive neural control for 

DC bus stabilization in large-scale residential microgrids with enhanced generation capacity[5]. 

This paper addresses this gap by proposing and validating a neural network-based predictive 

control framework for a redesigned, larger-capacity microgrid. The system has been upgraded to 

a 40 kW PV array and 15 kW wind turbine to better match the load profile and provide additional 

generation margin. The core innovation is the deployment of a NARMA-L2 neural network as a 

predictive secondary controller. This recurrent network models the inverse dynamics of the DC 

bus-BESS system, enabling proactive voltage stabilization rather than reactive correction. 

The primary objectives of this work are: 

1. To design and validate a hierarchical control framework integrating a NARMA-L2 

predictive controller for a large-scale residential microgrid with 40 kW PV and 15 kW 

wind capacity. 

2. To quantitatively evaluate the controller's performance against conventional PI control 

under realistic variable conditions, focusing on enhanced generation scenarios. 
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3. To demonstrate improved renewable energy utilization and system stability with the 

expanded configuration. 

2. Literature Review 

2.1 Large-scale Microgrid Control Challenges 

The scaling of renewable capacity in microgrids introduces unique challenges. Larger PV arrays 

and wind turbines increase the magnitude of power fluctuations, requiring more sophisticated 

voltage regulation strategies. Studies on large-scale residential systems in Saudi Arabia have 

focused primarily on techno-economic sizing [6] rather than advanced control solutions for the 

resulting dynamic challenges. 

2.2 Intelligent Control for Enhanced Systems 

Recent research has explored AI applications in microgrids, but few address the specific needs of 

scaled-up residential systems. Reinforcement learning has been applied to energy management in 

interconnected systems [7], while neural-fuzzy optimization has shown promise for efficiency 

improvements (Wang et al., 2024). However, these approaches often operate at slower timescales 

unsuitable for direct voltage control. 

2.3 Voltage Control Advancements 

For voltage regulation, advanced methods beyond conventional PI control have been investigated. 

Sliding Mode Control offers robustness but can cause chattering in large systems [9]. Explicit 

neural networks have been applied to secondary voltage control with stability guarantees [8], but 

their application to large-scale residential systems with significant generation variability remains 

limited. 

2.4 Research Gap and Contribution 

Existing literature lacks comprehensive studies on predictive neural control for large-scale 

residential microgrids with enhanced renewable capacity (40+ kW PV, 15+ kW wind). Most 

research focuses on either smaller systems or higher-level optimization without addressing the 

intensified voltage stability challenges of scaled generation. 

This paper contributes by: 

1. Proposing a predictive NARMA-L2 neural network controller specifically designed for 

large-scale residential microgrids with 40 kW PV and 15 kW wind capacity. 

2. Providing enhanced system modeling and sizing methodology for high-capacity residential 

applications in coastal Saudi Arabia. 

3. Demonstrating quantitative performance improvements in both voltage stability and 

renewable utilization with the expanded system configuration. 
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3. Enhanced System Description and Mathematical Modeling 

3.1 System Study and Optimal Sizing 

The current section defines the study site, the estimation of residential energy demand and optimal 

sizing of a stand-alone renewable energy system submitted by photovoltaic (PV) panels, wind 

turbines and battery storage, as shown in Figure 1. 

 

Figure 1: Architecture of the Microgrid 

Based on enhanced resource assessment for increased reliability and generation margin: 

Table 1: Enhanced Microgrid Component Sizing 

Component Enhanced Capacity Rationale 

PV Array 40 kW Additional margin for cloudy days, aging degradation 

Wind Turbine 15 kW Better night-time coverage, redundancy 

BESS 100 kWh Maintained for 10-hour autonomy 

Daily Load 177.5 kWh Unchanged residential profile 

 

The enhanced microgrid component sizing adopted in this study, including the 40 kW PV array, 

15 kW wind turbine, and 100 kWh battery energy storage system, is summarized in Table 1. 

The 40 kW PV array comprises approximately 133 modules of 300W each. The 15 kW wind 

system utilizes three 5 kW turbines for improved reliability. This configuration increases the 

renewable penetration ratio from approximately 85% to 92% while maintaining the same 100 kWh 

BESS for storage autonomy [10]. 
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3.2 Mathematical Modeling of Enhanced Components 

3.2.1 Enhanced DC Bus Dynamics 

The DC bus equation remains fundamentally the same but with larger generation components: 

 

where 𝐼𝑝𝑣,40𝑘𝑊 and 𝐼𝑤𝑖𝑛𝑑,15𝑘𝑊 represent currents from the enhanced generation systems, leading 

to larger magnitude fluctuations during transients. 

3.2.2 Revised Power Converter Specifications 

 PV Boost Converter (40 kW): Increased to 12 mH inductor and 0.4 mF capacitor to handle 

higher power levels. 

 Wind Converter (15 kW): Enhanced to 4 mH inductor and 0.3 mF capacitor. 

 Battery Bidirectional Converter: Maintained at 6.3 mH inductance and 5 mF capacitor. 

3.2.3 Control Problem Formulation for Enhanced System 

The control objective remains voltage regulation: 𝑉𝑑𝑐 → 𝑉𝑑𝑐,𝑟𝑒𝑓 = 230𝑉. However, the challenge 

intensifies due to: 

1. Larger disturbance magnitudes from enhanced generation sources 

2. Increased rate-of-change of power during transients 

3. More complex coordination between larger generation assets 

4. Proposed Hierarchical Control Architecture for Enhanced System 

4.1 Primary Control Layer Enhancements 

 PV MLP-MPPT: Updated to 4-12-1 architecture to handle the expanded 40 kW array's 

characteristics. 

 Wind MLP-MPPT: Modified to 3-10-1 structure for the 15 kW system's dynamics. 

 Current Controllers: Gain-scheduled PI controllers to handle wider operating ranges[11]. 

4.2 Secondary Control Layer: Enhanced NARMA-L2 Design 

The NARMA-L2 controller is redesigned for the enhanced system: 

Architecture: 3-18-1 structure with inputs: 

1. DC bus voltage error (Δ𝑉 = 𝑉𝑑𝑐,𝑟𝑒𝑓 − 𝑉𝑑𝑐) 

2. Battery State of Charge (SOC) 
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3. Rate of change of total generation (𝑑𝑃𝑔𝑒𝑛/𝑑𝑡) 

Training Enhancement: The training dataset includes scenarios specific to large-scale systems: 

 Partial shading on large PV arrays 

 Gust-driven wind power spikes 

 Simultaneous generation and load transients 

4.3 Tertiary Control Layer: Enhanced EMS Logic 

The EMS is updated with additional rules for the enhanced system: 

 Priority-based curtailment for managing larger surpluses 

 Predictive scheduling using generation forecasts 

 Battery health optimization with reduced cycling frequency 

Table 2: Enhanced Controller Specifications 

Control Layer Controller Enhanced Features 

Primary PV MLP-MPPT 4-12-1 architecture, handles partial shading 

Primary Wind MLP-MPPT 3-10-1, gust compensation 

Secondary NARMA-L2 3-18-1, rate-based prediction 

Tertiary EMS Priority curtailment, predictive scheduling 

 

The detailed specifications of the proposed hierarchical control architecture and its associated 

controllers are presented in Table 2. 

At the tertiary control level, the focus shifts to global power flow coordination and system-level 

energy management. This layer hosts the Energy Management System (EMS), which supervises 

distributed generation units, storage devices, and load dispatch. Unlike predictive optimization 

approaches, the EMS here operates strictly on real-time measurements of renewable generation, 

load demand, and battery state-of-charge (SOC). By continuously monitoring these signals, it 

executes switching and dispatch decisions that balance supply and demand while respecting 

converter ratings and operational constraints[12][13]. 

Previous studies have demonstrated the effectiveness of artificial neural network (ANN)-based 

hierarchical control frameworks in enhancing the operational performance of residential 

microgrids. In particular, Bahabri et al. (2025) proposed a multi-layer intelligent control 

architecture integrating ANN-based MPPT, battery management, and energy management 

systems, achieving significant improvements in voltage regulation, renewable energy utilization, 

and system stability under realistic operating conditions. These findings provide a strong 
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foundation for the present work and motivate the extension toward predictive DC bus control for 

higher-capacity hybrid residential microgrid configurations[14]. 

Recent studies have investigated hybrid renewable energy systems for marine applications. 

Banawi et al. (2025) developed a wind–solar–fuel cell–battery integrated power system with PI-

based energy management, demonstrating significant emission reduction and improved 

operational stability for low-emission marine vessels in Saudi Arabia[15]. 

5. Simulation Setup and Performance Metrics for Enhanced System 

5.1 Enhanced Test Scenarios 

The simulation includes specific scenarios for the enhanced system: 

1. 40 kW PV partial shading: 50% of array shaded at t=4.5s 

2. 15 kW wind gust response: Wind speed spike from 4 to 8 m/s at t=6s 

3. Simultaneous load step: 15 kW to 30 kW load increase at t=7s 

4. Grid-forming operation: Islanded mode testing with large load steps 

5.2 Additional Performance Metrics 

Beyond the standard metrics, the enhanced system evaluation includes: 

Beyond the standard metrics, the enhanced system evaluation includes: 

1. Renewable Energy Utilization Factor (REUF): 

𝑅𝐸𝑈𝐹 =
Actual renewable energy used

Total available renewable energy
× 100% 

2. Large-disturbance rejection capability 

3. BESS cycling reduction percentage 

6. Results and Discussion for Enhanced System 

6.1 Voltage Regulation with Enhanced Generation 

Table 3: Enhanced Performance Comparison 

Metric 
PI Controller 

(40/15 kW) 

NARMA-L2 Controller 

(40/15 kW) 
Improvement 

Voltage RMSE (V) 3.15 1.01 68.0% 

Settling Time after 50% 

PV drop (ms) 
~520 ~180 65.4% 

REUF (%) 83.5 92.8 11.1% 

BESS cycles per day 4.2 2.8 
33.3% 

reduction 
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The quantitative performance comparison between the conventional PI controller and the proposed 

NARMA-L2 controller is provided in Table 3. 

6.2 Key Findings from Enhanced System 

1. Superior Large-disturbance Handling: The NARMA-L2 controller demonstrates 

exceptional performance during the 15 kW wind gust event, maintaining voltage within 

±3% of nominal compared to ±8% with PI control. 

2. Improved Renewable Utilization: The enhanced 40/15 kW configuration with NARMA-

L2 control achieves 92.8% REUF, representing an 11% improvement over the PI-

controlled system and a 7% improvement over the original 36/10 kW configuration. 

3. Reduced Battery Stress: Despite larger generation fluctuations, the predictive nature of 

NARMA-L2 reduces daily battery cycles from 4.2 to 2.8, extending battery life by 

approximately 30%. 

4. Enhanced Transient Response: The controller's predictive capability allows it to anticipate 

disturbances from the larger generation assets, resulting in faster and smoother voltage 

recovery. 

Table 4 outlines the EMS decisions during the five key time segments. 

Interval (s) EMS Action Battery Operation Notes 

0–2 Normal Charge Moderate surplus stored 

2–4 Discharge Mode Discharge Peak demand, battery supports load 

4–6 Curtailment Charge High renewable surplus 

6–8 Normal Discharge Load exceeds generation 

8–10 Normal Charge Wind dominates at low load 

 

The EMS operational decisions corresponding to different time intervals and operating conditions 

are summarized in Table 4. 

Figure 2 shows the load demand profile, which mimics a high-end residential consumption pattern, 

peaking around midday and tapering off at night. This figure, when viewed in sequence with the 

previous environmental data, sets the context for analysing generation-load alignment. 
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Figure 2:  Load Profile Scenario 

Figure 3 shows the Energy Management System (EMS) control signals. These figures indicate the 

real-time decision-making such as charging during generation surplus (e.g., 4–6 s) and discharging 

during demand peaks (e.g., 2–4 s). 

 

Figure 3: EMS control signal 

6.3 Economic and Reliability Implications 

The enhanced 40/15 kW configuration provides: 

 Increased reliability: 99.7% load availability vs. 99.2% in original system 

 Reduced operational costs: Lower battery replacement costs due to reduced cycling 

 Better grid services: Improved capability for grid support functions 
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7. Conclusion and Future Work 

7.1 Conclusion 

This paper presented an enhanced hierarchical control framework for large-scale residential 

microgrids, featuring a 40 kW PV array and 15 kW wind turbine configuration controlled by a 

predictive NARMA-L2 neural network. The expanded system design addresses the increased 

voltage stability challenges of high-capacity renewable integration while improving overall energy 

utilization. 

The key findings demonstrate: 

 Enhanced Performance: 68% improvement in voltage RMSE and 65% faster disturbance 

rejection compared to PI control. 

 Increased Renewable Utilization: 92.8% renewable energy utilization factor, representing 

optimal use of the expanded generation capacity. 

 Reduced Battery Stress: 33% reduction in daily charge cycles, extending system lifespan. 

 Superior Scalability: The framework effectively handles the amplified dynamics of large-

scale residential systems. 

This research validates that neural network-based predictive control is essential for realizing the 

full potential of large-scale residential microgrids, particularly in regions like Saudi Arabia 

pursuing aggressive renewable energy targets. 

7.2 Future Work 

1. Multi-microgrid Coordination: Extend the framework to coordinate multiple enhanced 

residential microgrids in a community setting. 

2. Hardware Implementation: Deploy the enhanced 40/15 kW system with NARMA-L2 

control in a pilot residential installation in Jeddah. 

3. Adaptive Sizing Algorithm: Develop an AI-based sizing tool that dynamically 

recommends PV/wind ratios based on historical data and control capabilities. 

4. Cybersecurity Integration: Implement blockchain-based secure communication for the 

enhanced control system's data exchanges. 
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