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Abstract 

Purpose: Computational modelling is central to chemical engineering education, research, and 

process design, yet sustained access to modelling capabilities in many low-resource institutions 

remains limited by high licensing costs and dependence on proprietary software ecosystems. This 

study examines the potential of open-source modelling tools to provide technically robust and 

institutionally sustainable alternatives, addressing persistent gaps in tool selection, curriculum 

integration, and long-term adoption. 

Methodology: A systematic review and synthesis of open-source computational modelling tools 

across molecular, continuum, and process scales is conducted. Based on this analysis, a decision 

tree is developed to link modelling objectives and physical-fidelity requirements to appropriate 

open-source tools. In parallel, a decision-driven institutional adoption framework is proposed to 

guide phased implementation in resource-constrained chemical engineering environments. 

Findings: The review shows that mature open-source tools now exist across the full modelling 

hierarchy, enabling core chemical engineering workflows without reliance on proprietary 

platforms. The proposed decision tree supports transparent and reproducible software selection, 

while the adoption framework highlights the central role of infrastructure readiness, skills 

development, curriculum maturity, and governance in sustaining open-source uptake. Explicit 

decision points and feedback loops are identified as critical for managing heterogeneous 

infrastructure and evolving human capacity. 

Unique contribution to theory, practice and policy: This work delivers an integrated, decision-

based approach to open-source modelling adoption in chemical engineering, linking technical 

capability with institutional capacity building. It provides actionable guidance for educators and 

institutions seeking equitable and sustainable digital modelling ecosystems, with relevance beyond 

the Malawian and Sub-Saharan African context. 

Keywords: Open-source modelling, Chemical engineering education, Computational modelling 

tools, Decision-support framework, Resource-constrained institutions 
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Background 

Computational modelling has become an indispensable component of modern chemical 

engineering. Whether in process simulation, molecular dynamics, atomistic simulations, or 

multiphysics modelling, computational modelling tools accelerate research, support design 

decisions, and enhance teaching. However, many traditional software packages, especially the 

commercial ones, carry significant licensing costs and ICT infrastructure demands that can limit 

their accessibility, especially in resource-constrained settings like Malawi and broader Sub-

Saharan Africa. In this context, open-source computational modelling tools offer a viable 

opportunity for higher education and research institutions in Malawi and across Africa to 

democratise access to advanced modelling capabilities in chemical engineering. 

Open-Source Software as an Enabler of Accessible Computational Modelling 

Open-source modelling refers to developing and running scientific or engineering models using 

software whose source code is openly available, freely accessible, and legally modifiable (De 

Maria et al., 2020). In practice, it means that the tools, algorithms, solvers, and often full workflows 

are transparent, inspectable, and customisable by the user.  

Open-source software offers several advantages. Firstly, it eliminates and/or dramatically reduces 

the cost barrier associated with proprietary licenses, enabling students and researchers to download 

and use powerful tools free of charge (Cummings & Gilmer, 2019). Furthermore, according to 

J.M. Pearce (2020), the use of open-source computational tools in scientific research generally 

leads to economic savings of up to 87% compared to when using proprietary tools. Beyond cost 

savings, open-source tools foster adaptability as users can modify code to fit their specific research 

or educational needs, thereby promoting innovation and a deeper understanding of modelling 

principles (Ansari et al., 2025). Moreover, research that has been conducted using proprietary 

software makes it hard to access the original code/model/script and this becomes problematic when 

other researchers are attempting to reproduce a computational study’s results (Cummings & 

Gilmer, 2019). On the other hand, with open-source models, researchers can and usually upload 

the models onto open access repositories like GitHub where other researchers can easily access 

the models for reproducibility.  

Across Africa, there is increasing advocacy for open science practices, reflected in a growing 

emphasis on open access publishing, open data, and the adoption of open-source software to 

support research, education, and institutional capacity building (Pienaar, 2023).  

Barriers to Open-Source Adoption in African Higher Education 

Although open-source tools have potential, their uptake in African higher‑education institutions 

has been constrained by structural and systemic challenges. The African open science ecosystem 

still faces “huge gaps”, most notably in e‑infrastructure, institutional advocacy, and policy 

https://www.zotero.org/google-docs/?FH7ST9
https://www.zotero.org/google-docs/?FH7ST9
https://www.zotero.org/google-docs/?lR6AHk
https://www.zotero.org/google-docs/?DYXX0M
https://www.zotero.org/google-docs/?hgwHLU
https://www.zotero.org/google-docs/?cdaLr0
https://www.zotero.org/google-docs/?cdaLr0
https://www.zotero.org/google-docs/?1q32sY
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adoption, which limit the full realisation of open-source benefits (Okafor et al., 2022; Skelly & 

Chiware, 2022).  

Several empirical studies highlight the specific barriers that hinder the adoption of open-source 

modelling tools in Malawi and Africa. Firstly, poor ICT infrastructure and internet connectivity is 

seen as one of the most prohibitive barriers to realising an open-source chemical engineering 

modelling future. The internet capacity is uneven and often limited. Many African universities 

lack high-speed, reliable bandwidth, and must rely on low-bandwidth connectivity, which hampers 

online collaboration, software downloads, and remote learning (Ogunmakin, 2018). Furthermore, 

in Africa, technical weaknesses such as insufficient computer equipment, poor data security, and 

inadequate power supply have always been widespread in tertiary institutions (Samson Babalola 

& Akinyi Genga, 2024). More specifically in Malawi, studies of e‑learning report that unreliable 

electricity supply is a key constraint: power outages affect students’ ability to access digital 

resources (Gama et al., 2022). 

Beyond poor ICT infrastructure, institutional policy and support also tend to hinder widespread 

support for the adoption of open-source scientific tools. Some universities lack coherent ICT 

strategies that explicitly support open-source software adoption. A review of ICT implementation 

in African universities, by Ntorukiri et al. (2022), found that weak institutional plans, underfunded 

ICT departments, and limited capacity to maintain hardware and software impede progress. 

Moreover, although there is increasing interest in open science, many institutions have not yet 

institutionalised open-source software in their policies or curricula, limiting practical adoption 

(Okafor et al., 2022).  

Capacity shortage and lack of dedicated training on open-source software is another huge barrier 

to the future of open-source modelling in chemical engineering. There is a shortage of skilled 

personnel as many faculty and support staff in African universities lack the training and technical 

expertise needed to deploy, maintain, and teach with open-source modeling tools (Babalola & 

Genga, 2025). 

According to Gownaris et al. (2022), a lack of advocacy and limited visibility of open-source 

science tools is one of the largest barriers to uptake. This problem is compounded by aggressive 

marketing, and/or popularity of proprietary software companies: many researchers in Africa may 

default to widely known commercial tools rather than explore open‑source alternatives. 

Furthermore, institutional culture and legacy systems have also shaped how academic institutions 

view open-source software. Many academic departments are accustomed to proprietary software 

and may be resistant to transitioning to open-source alternatives. This resistance is not necessarily 

due to lack of will, but often reflects logistical inertia, lack of formal incentives, and concerns 

about support and stability. Institutions may also lack long-term strategic commitment; open-

source projects may be seen as temporary or experimental rather than core to teaching and research 

infrastructure (Ntorukiri et al., 2022).  

https://www.zotero.org/google-docs/?23O1co
https://www.zotero.org/google-docs/?23O1co
https://www.zotero.org/google-docs/?FHXNcw
https://www.zotero.org/google-docs/?0qusk5
https://www.zotero.org/google-docs/?0qusk5
https://www.zotero.org/google-docs/?clyn3R
https://www.zotero.org/google-docs/?Ygrl49
https://www.zotero.org/google-docs/?fBpS2k
https://www.timeshighereducation.com/news/huge-gaps-african-open-science-movement-new-network-warns?utm_source=chatgpt.com
https://www.zotero.org/google-docs/?iXEij1
https://www.zotero.org/google-docs/?iXEij1
https://www.zotero.org/google-docs/?kqHFiq
https://www.zotero.org/google-docs/?broken=ECuTUD
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Finally, indirect financial and sustainability constraints present yet another challenge to the 

adoption of open-source modelling tools in chemical engineering and the scientific community 

altogether. While the software itself may be free, indirect costs remain significant since universities 

need to invest in infrastructure, training, system administration, and data storage (Kodhek & 

Kamau, 2025). This is further made worse due to limited funding for ICT and research in Africa 

explained earlier.  

Rationale for a Review Focused on Malawi and Africa 

Given the systemic barriers to accessing proprietary software and the growing technical maturity 

of open-source modelling tools, this review will provide a focused examination of chemical 

engineering open-source software within the Malawian and broader African context. The review 

will raise awareness among educators, researchers and institutional leaders about the range of 

freely available tools and how they can be integrated into chemical engineering teaching and 

research. It will also identify key capacity-building needs by highlighting gaps in training, 

infrastructure and institutional strategies that currently limit effective adoption. In addition, this 

review will serve as a call to action by outlining policy, educational and community-driven 

approaches to support sustainable uptake of open-source modelling. Finally, it lays the foundation 

for future empirical studies in Malawi and across Africa to evaluate adoption, usage, and 

educational or research impact. 

Research Objectives 

Based on the foregoing rationale, this review aims to systematically catalogue the major open-

source computational tools used in chemical engineering and chemistry, including those applied 

to process simulation, molecular dynamics, thermodynamics, optimisation and multiphysics 

partial differential equation modelling. It further seeks to describe the capabilities, limitations and 

typical application domains of these tools. Building on this foundation, the review maps open-

source alternatives to commonly used commercial chemical engineering software, such as Aspen 

Plus, COMSOL Multiphysics, ANSYS Fluent and MATLAB, and outlines realistic migration 

pathways for African institutions. In addition, the review assesses the current level of adoption of 

open-source tools across African universities by identifying documented case studies of successful 

integration as well as areas where uptake remains limited or absent. Finally, it proposes actionable, 

context-appropriate recommendations to enhance awareness, capacity building and sustainable use 

of open-source chemical engineering tools, and identifies the essential training and skills 

development needs required for students and researchers to effectively adopt, implement and 

maintain open-source computational tools within Malawian and broader African higher education 

systems.  

Methodology for Identifying Relevant Literature and Tools 

The literature search covered publications from approximately 2005 to 2025, reflecting the 

emergence and maturation of open-source computational tools in chemical engineering. To 

https://www.zotero.org/google-docs/?TUF1T4
https://www.zotero.org/google-docs/?TUF1T4
https://esdev.org/promoting-higher-education-digital-transformation-in-africa-gaps-and-solutions/?utm_source=chatgpt.com
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systematically identify open-source modelling tools relevant to chemical engineering, as well as 

the literature assessing their capabilities, adoption and suitability for Malawian and African 

institutions altogether, we employed a structured, multi-stage methodology combining database 

searches, targeted keyword strategies and cross-verification with authoritative documentation and 

benchmarking studies. The approach followed principles from the PRISMA framework adapted 

for a software-focused scoping review (Page et al., 2021). 

Literature Search Strategy 

A comprehensive search was conducted across major academic databases, including Scopus, Web 

of Science, ScienceDirect and IEEE Xplore. Search queries drew on terms related to open-source 

modelling, chemical engineering simulation, process modelling, computational fluid dynamics, 

partial differential equation solvers, molecular and electronic structure modelling, numerical 

computing and software adoption in Malawi and Africa in general. Table 1 summarises the search 

strings employed in the literature identification stage. 

Table 1. Keyword Groups and Search Strings 

Keyword Group Search Strings 

Open-source modelling "Open-source modelling" 

Chemical engineering 

simulation 

"Chemical engineering simulation tools" 

Process simulation and CFD "Process simulation" AND "open-source", "open-source CFD" 

PDE solvers "Open-source PDE solver" 

Molecular modelling "Molecular dynamics open-source" 

Electronic-structure 

modelling 

"DFT open-source" 

Numerical computing "Numerical computing open-source", "Python", "GNU Octave" 

Software adoption in Malawi 

& Africa 

"Software adoption Africa & Malawi" AND "engineering", "ICT 

Africa engineering education & Malawi" 

These search strings ensured broad coverage across all relevant modelling scales addressed later 

in the review. 

Inclusion and Exclusion Criteria 

Screening of studies, technical documents and reports was conducted using predefined inclusion 

and exclusion criteria. Materials were included if they described or evaluated open-source 

computational tools applicable to chemical engineering, including broader open-source modelling 

https://www.zotero.org/google-docs/?2J4sET
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approaches, addressed tool capabilities, performance or typical application domains, discussed 

training, adoption, infrastructure or policy considerations relevant to African institutions, or 

provided methodological demonstrations, workflows or comparative analyses of modelling 

approaches. Items were excluded if they focused exclusively on proprietary software without 

comparative relevance, offered only superficial descriptions lacking methodological depth, or 

pertaining to fields unrelated to chemical engineering modelling. 

Table 2: Criteria Applied During Screening 

Inclusion Criteria Exclusion Criteria 

Open-source modelling discussions Proprietary-only descriptions 

Methodological or performance evaluation Minimal methodological content 

Relevance to chemical engineering domains Irrelevant disciplinary focus 

Discussion of adoption or training challenges — 

2.3. Identification of Software Tools 

To ensure accurate identification of tools, information from the literature search was cross-verified 

using multiple authoritative sources. These included official documentation, update notes, 

community-maintained repositories, peer-reviewed benchmarking studies and reports discussing 

the adoption or use of modelling tools in chemical engineering education and research. This step 

supported the subsequent classification of tools and modelling domains presented later in the 

review. 

Cross-Scale Mapping Procedure 

Once the relevant tools and studies were identified, they were mapped onto modelling scales 

ranging from atomistic modelling to process-level simulation, including cross-scale numerical 

computing. The mapping was guided by several criteria, namely the underlying numerical or 

theoretical methods employed, the typical engineering applications associated with each scale, the 

input and output requirements of the tools, and their ability to interface with broader modelling 

workflows, including techno-economic assessment frameworks. This systematic mapping directly 

informed the modelling-scales and the structured domain classification used in the results and 

discussion sections. 

African Contextualisation 
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Because the study focuses on Malawi and the wider African context, targeted searches were also 

performed using terms related to chemical engineering education, digital infrastructure and 

computational adoption challenges in African institutions. These additional searches helped 

contextualise the barriers and opportunities described in Section 1.2 and informed the 

interpretation of aggregated literature findings. 

Validation and Triangulation 

To improve reliability, all findings were cross-checked across multiple sources. Non-academic 

materials such as forums, blogs and community discussions were used only when they supported 

or clarified information found in peer-reviewed literature. Cost-related information for commercial 

software was confirmed, where possible, against vendor brochures or institutional licensing 

documents. This validation process ensured that the methodological synthesis remained 

transparent, reproducible and grounded in verifiable sources. 

PRISMA Study-Selection Flow 

The study-selection process involved several screening stages that reduced the initial pool of 

retrieved records to the final set included in this review. After compiling all records from database 

searches, documentation sources and grey literature, duplicates were removed and the remaining 

items were screened by title and abstract. Full-text assessment was then carried out using the 

predefined inclusion and exclusion criteria described earlier. This stepwise process ensured that 

only studies with clear methodological relevance to open-source modelling in chemical 

engineering were retained. The numbers corresponding to each stage of identification, screening, 

eligibility assessment and final inclusion are summarised in Figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1 PRISMA flow diagram summarising the identification, screening, eligibility assessment 

and final inclusion of studies considered in this review. 
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Results 

This section presents the outcomes of the systematic literature identification and classification 

process described in Section 2. The results focus on identifying open-source computational 

modelling tools that are actively used, documented, or discussed within the chemical engineering 

literature, and on organising these tools into coherent modelling domains. Rather than evaluating 

individual software packages in isolation, the results synthesise how open-source tools collectively 

span the full hierarchy of modelling scales encountered in chemical engineering education and 

research. 

Modelling-Domain Classification of Open-Source Tools 

The identified tools were grouped according to their primary modelling domains, ranging from 

atomistic and electronic-structure calculations, through molecular and mesoscale simulations, to 

continuum-scale transport modelling and process- and plant-level simulation. This domain-based 

organisation reflects how computational modelling is typically structured within chemical 

engineering curricula and research workflows, where tool selection is governed by the dominant 

physical phenomena, spatial and temporal scales, and intended application. 

Table 3 summarises the principal open-source computational tools identified in the literature, 

together with their typical scopes of application and representative sources documenting their use. 

The table demonstrates that mature open-source alternatives now exist across all major modelling 

domains traditionally dominated by proprietary software, including process simulation and techno-

economic assessment, computational fluid dynamics, multiphysics and partial differential equation 

solvers, molecular dynamics, electronic-structure modelling, electrochemical systems, and general 

scientific computing. 
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Table 3. Chemical Engineering Open-Source Computational Tools Classified by Modelling 

Domain 

 

Modelling Domain Main Tools Identified Scope / Typical 

Applications 

Source(s) 

Process Simulation 

and Techno-Economic 

Assessments 

DWSIM; COCO 

Simulator 

Flowsheeting, 

thermodynamics, unit 

operations, equilibrium 

reactors,conversion reactors,  

process modelling 

(Tangsriwong 

et al., 2020), 

(Oyegoke, 

2023) 

Computational Fluid 

Dynamics (CFD) 

OpenFOAM Laminar/turbulent flow, heat 

transfer, multiphase flow, 

reactive flow 

(Chen et al., 

2014) 

Multiphysics / Partial 

Differential Equation 

(PDE)  Solvers 

FEniCS; FreeFEM++ Finite-element modelling of 

diffusion, heat transfer, 

electrochemical systems, 

fluid flow 

(Alnæs et al., 

2015a), 

(Pironneau, 

2017) 

Molecular Dynamics 

(MD) 

 

 

LAMMPS; 

GROMACS 

Classical mechanical 

atomistic simulations of 

materials, electrolytes, 

molecular interactions, 

transport properties 

Thielemann et 

al., 2019) 

Density Functional 

Theory (DFT) & 

Electronic Structure 

Quantum ESPRESSO; 

GPAW; CP2K; 

NWChem 

Quantum mechanical 

atomistic simulations to 

determine electronic 

structures, adsorption 

energies, catalytic surfaces, 

reaction pathways 

(Giannozzi et 

al., 2009), 

(Larsen et al., 

2017), (Valiev 

et al., 2010) 

Thermodynamics & 

Chemical Reaction 

Engineering 

Cantera; RMG-Py Chemical kinetics, reaction 

mechanisms, combustion 

modelling, reactor 

simulations 

(Goodwin et 

al., 2018), 

(Spiekermann 

et al., 2022) 

Electrochemical 

Modelling 

FEniCSx; 

FreeFEM++; 

PyBaMM 

Electrochemical cells, Li-ion 

batteries, reaction–diffusion 

systems 

(Molel & 

Fuller, 2023), 

(Orncompa et 

al., 2024), 

(Sulzer et al., 

2021) 

General Scientific 

Computing 

Python (NumPy, 

SciPy, Matplotlib); 

GNU Octave 

Numerical computation, 

optimisation, plotting, data 

processing, teaching 

workflows 

(Molel & 

Fuller, 2023), 

(Hansen, 

2011) 

Geometry Preparation FreeCAD 2D and 3D design and 

meshing of reactor 

geometries that are later 

exported to other software 

like FreeFEM++ or FEniCSx 

(Riegel et al., 

2016) 

https://www.zotero.org/google-docs/?JDLomq
https://www.zotero.org/google-docs/?JDLomq
https://www.zotero.org/google-docs/?Q9741R
https://www.zotero.org/google-docs/?Q9741R
https://www.zotero.org/google-docs/?TqUtKb
https://www.zotero.org/google-docs/?TqUtKb
https://www.zotero.org/google-docs/?aQQloe
https://www.zotero.org/google-docs/?aQQloe
https://www.zotero.org/google-docs/?qUyqtj
https://www.zotero.org/google-docs/?qUyqtj
https://www.zotero.org/google-docs/?IgdpEn
https://www.zotero.org/google-docs/?IgdpEn
https://www.zotero.org/google-docs/?0tfQNv
https://www.zotero.org/google-docs/?0tfQNv
https://www.zotero.org/google-docs/?xrr3rR
https://www.zotero.org/google-docs/?xrr3rR
https://www.zotero.org/google-docs/?E166qp
https://www.zotero.org/google-docs/?E166qp
https://www.zotero.org/google-docs/?cLGVFQ
https://www.zotero.org/google-docs/?cLGVFQ
https://www.zotero.org/google-docs/?ziBbC5
https://www.zotero.org/google-docs/?ziBbC5
https://www.zotero.org/google-docs/?9XsTKd
https://www.zotero.org/google-docs/?9XsTKd
https://www.zotero.org/google-docs/?FPcvOL
https://www.zotero.org/google-docs/?FPcvOL
https://www.zotero.org/google-docs/?PLbNrD
https://www.zotero.org/google-docs/?PLbNrD
https://www.zotero.org/google-docs/?st26LW
https://www.zotero.org/google-docs/?st26LW
https://www.zotero.org/google-docs/?IUzkJG
https://www.zotero.org/google-docs/?IUzkJG
https://www.zotero.org/google-docs/?VTScYD
https://www.zotero.org/google-docs/?VTScYD
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To complement the tabulated classification, Figure 2 presents a schematic representation of the 

modelling scales and domains associated with the identified tools. The figure illustrates how open-

source tools are distributed across atomistic, mesoscale, macroscale, and process-level modelling, 

and how cross-scale scientific computing environments such as Python and GNU Octave support 

integration between these levels. 

Together, Table 3 and Figure 2 provide a structured overview of the open-source modelling 

landscape in chemical engineering and establish the foundation for analysing tool capabilities, 

limitations, adoption patterns, and suitability for use in Malawi and other resource-constrained 

African contexts. 

 

Figure 2: Modelling scales and domains of application of the open-source modelling tools 

identified in this study. 
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Capabilities and limitations across modelling scales 

The open-source modelling tools identified in this study collectively span the full hierarchy of 

modelling scales shown in Figure 2, from electronic-structure calculations at the atomistic level to 

flowsheet-style simulations at the process and plant scale. At the atomistic scale (Å to nm), 

electronic-structure packages such as Quantum ESPRESSO, GPAW, CP2K, and NWChem 

operate within the density functional theory framework, solving approximate forms of the 

electronic Schrödinger equation to obtain equilibrium geometries, adsorption energies, reaction 

pathways, charge distributions, and related quantum-mechanical properties (Giannozzi et al., 

2009; Larsen et al., 2017; Valiev et al., 2010). These tools are essential for studying catalytic 

surfaces, electrode–electrolyte interfaces, and molecular-level reaction mechanisms (Shan et al., 

2017). Atomistic molecular dynamics tools such as LAMMPS and GROMACS simulate 

interacting atoms by integrating Newton’s equations of motion (Thielemann et al., 2019). 

Despite their high physical fidelity, atomistic approaches are constrained by small system sizes 

and short accessible timescales, typically on the order of femtoseconds (Kumar et al., 2022). 

Consequently, their primary role in chemical engineering lies in mechanistic understanding and in 

generating physically grounded parameters such as activation energies, adsorption strengths, and 

transport coefficients for use in higher-scale models (Manorosoa et al., 2025). 

At the mesoscale (nm to µm), coarse-grained molecular dynamics implementations, particularly 

within LAMMPS, reduce atomic resolution by grouping atoms into interaction sites, enabling 

access to longer length and time scales while retaining essential physical behaviour (Thompson et 

al., 2022). Mesoscale simulations provide insight into interfacial phenomena, confinement effects, 

and effective transport properties that are difficult to represent using continuum approaches alone 

(Goh & Choi, 2025). Outputs from mesoscale modelling are frequently used to inform continuum-

scale simulations through parameterisation of transport coefficients or interfacial behaviour (Bock 

et al., 2023). 

At the macroscale (mm to m), OpenFOAM, FEniCSx, and FreeFEM++ provide continuum-level 

modelling capabilities based on conservation equations for momentum, heat, and species transport. 

OpenFOAM employs a finite-volume framework suitable for laminar and turbulent flow, 

multiphase systems, and reactive transport (Chen et al., 2014), while FEniCS/FEniCSx (Alnæs et 

al., 2015a; Molel & Fuller, 2023) and FreeFEM++ (Pironneau, 2017) offer finite-element 

environments that allow flexible formulation of coupled and nonlinear multiphysics problems. 

Although these tools are highly adaptable, they require substantial expertise in numerical methods, 

meshing, and solver configuration (Font & Peria, 2013), making them most appropriate for 

advanced teaching and research contexts. 

At the process and plant scale (m to km), DWSIM, COCO Simulator, PyBaMM, and RMG-Py 

support flowsheeting, reaction engineering, and device-level electrochemical modelling. DWSIM 

and COCO provide steady-state and dynamic process simulation environments with 
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thermodynamic models, unit operations, and recycle handling suitable for mass and energy balance 

analysis and preliminary process design (Oyegoke, 2023; Tangsriwong et al., 2020). PyBaMM 

solves coupled electrochemical, diffusion, and charge-transport equations for battery systems 

(Sulzer et al., 2021), while RMG-Py generates detailed chemical kinetic mechanisms for reactor 

and combustion modelling (Spiekermann et al., 2022). FreeCAD supports geometry preparation 

for export to CFD and multiphysics solvers (Riegel et al., 2016). 

Across all scales, Python and GNU Octave act as cross-cutting scientific computing environments 

supporting numerical computation, optimisation, automation, and reproducible workflows (Ford, 

2014; Hagg & Kirschner, 2023; Zheng, 2023). Python-based ecosystems enable integration across 

modelling levels, including automation of electronic-structure calculations, post-processing of 

molecular dynamics trajectories, coupling with continuum solvers, and analysis of process-level 

simulations (Kluyver Thomas et al., 2016). 

Mapping open-source alternatives to commercial software 

The identified open-source tools can be mapped directly to widely used commercial chemical 

engineering software, revealing realistic migration pathways for academic institutions. 

Commercial platforms such as Aspen Plus/Aspen HYSYS, ANSYS Fluent/CFX, COMSOL 

Multiphysics, MATLAB, and SolidWorks remain dominant due to validated models, integrated 

workflows, and mature user support (Bartolome & Van Gerven, 2022; Chaurasia, 2021; Sharma 

& Gobbert, 2010). However, high licence costs, limited transparency, and dependence on 

proprietary ecosystems present significant barriers for many African universities (UNESCO, 

2021). 

In contrast, open-source alternatives DWSIM and COCO for process simulation, OpenFOAM and 

FEniCSx for transport and multiphysics modelling, LAMMPS and GROMACS for molecular 

simulation, Quantum ESPRESSO and related packages for electronic structure, Cantera and RMG-

Py for kinetics, PyBaMM for electrochemical systems, Python and GNU Octave for numerical 

computing, and FreeCAD for geometry preparation collectively provide a coherent, licence-free 

modelling ecosystem suitable for teaching and early-stage research. 

The literature consistently supports incremental rather than wholesale migration, in which open-

source tools are introduced alongside commercial software for student projects and teaching 

laboratories, followed by deeper curriculum integration as capacity develops (Kluyver Thomas et 

al., 2016; UNESCO, 2021). 

Extent and scale of adoption in African universities 

Assessing the extent and scale of open-source modelling tool adoption in African universities is 

challenging due to the absence of systematic, tool-specific reporting in the peer-reviewed 

literature. Unlike commercial software, open-source tools are often adopted in decentralised and 

informal ways that are not captured by institutional audits. As a result, evidence consists primarily 
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of broad higher-education surveys of open-source software use (Tlili et al., 2022) and discipline-

level case studies. 

Documented case studies indicate adoption at the course or module level, such as the integration 

of FreeCAD and OpenFOAM into undergraduate engineering modules in South Africa (Botha & 

van Niekerk, 2025), demonstrating pedagogical viability. However, continent-wide, tool-resolved 

adoption metrics for chemical engineering departments are not currently reported, and this absence 

constitutes a key empirical finding of the review (Kamau & Namuye, 2012; Mwangi et al., 2021). 

Discussion 

This review demonstrates that the open-source chemical engineering modelling ecosystem is 

sufficiently mature to support teaching, research, and early-stage design workflows across 

molecular, continuum, and process scales (Alnæs et al., 2015b; Giannozzi et al., 2017). However, 

effective use in African universities is constrained less by software availability than by institutional 

capacity, staff training depth, and curriculum integration (UNESCO, 2021). 

Decision tree for modelling tool selection 

To support structured tool selection, Figure 3 presents a decision tree guiding users from problem 

definition to appropriate modelling domains and corresponding software options. The tree 

emphasises that modelling choices should originate from the engineering question rather than prior 

familiarity with specific software. 

 

Figure 3 Decision tree for selecting chemical engineering modelling tools. 
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Decision-driven adoption framework 

Building on the tool mappings and adoption challenges, Figure 3 presents a decision-driven 

framework for institutional adoption of open-source chemical engineering modelling. The 

framework conceptualises adoption as an iterative process governed by infrastructure readiness, 

skills adequacy, curriculum maturity, and institutional support, with remediation loops enabling 

staged capacity development. 

Figure 4: Decision-driven framework for institutional adoption  
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Actionable recommendations and skills requirements 

Sustainable adoption requires curriculum-anchored integration, departmental workflow 

standardisation, explicit governance structures, local development of teaching materials, and 

recurring training programmes (Mengesha, 2010; Mwelwa et al., 2020a; Prince & Felder, 2006). 

Training must emphasise computational implementation of numerical methods, reproducible 

workflows, domain-specific modelling competence, problem formulation, and local technical 

support capacity. 

Conclusions 

This review examined the landscape of open-source computational modelling tools relevant to 

chemical engineering and evaluated their suitability for adoption in Malawi and other resource-

constrained African institutions. By systematically mapping open-source alternatives to widely 

used commercial software across process simulation, computational fluid dynamics, multiphysics 

modelling, molecular simulation, electronic-structure calculations, electrochemical modelling, and 

numerical computing, the study demonstrates that technically credible and pedagogically validated 

open-source tools now exist across the full hierarchy of modelling scales encountered in chemical 

engineering education and research. 

The findings indicate that there is no fundamental technical barrier to using open-source software 

for core chemical engineering modelling tasks. Mature platforms are available for flowsheeting 

and techno-economic assessment, continuum-scale transport and multiphysics simulation, 

atomistic and molecular modelling, and numerical computation. When combined within coherent 

workflows, these tools are capable of supporting undergraduate teaching, graduate-level research, 

and early-stage design and techno-economic analysis without reliance on proprietary licences. 

However, the review also shows that adoption of open-source modelling tools in African 

universities remains uneven and insufficiently documented in the peer-reviewed literature. 

Evidence of adoption is primarily reported through qualitative case studies and general surveys of 

open-source software use, rather than through systematic, discipline-specific audits. While it is 

clear that adoption has occurred at least at the course or module level in parts of Africa, reliable 

continent-wide estimates of adoption within chemical engineering departments are currently 

unavailable. This limitation reflects gaps in reporting rather than an absence of implementation. 

The analysis further demonstrates that sustainable adoption is driven less by software capability 

than by institutional and educational factors. Open-source modelling tools are most effective when 

they are formally embedded within curricula, aligned with assessment, supported by standardised 

workflows, and reinforced through recurring training. Numerical methods courses represent a 

particularly important leverage point, as coupling mathematical foundations with intensive 

computational practice enables students to develop transferable modelling skills that remain 

relevant beyond specific software platforms. 
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Overall, this study shows that open-source modelling tools provide a realistic and sustainable 

pathway for strengthening chemical engineering education and research in Malawi and similar 

resource-constrained contexts. The primary challenge is no longer access to capable software, but 

the deliberate and institutionally supported integration of computational modelling into routine 

academic practice. Addressing this challenge can reduce dependency on costly proprietary 

platforms, improve graduate preparedness, and support the long-term development of locally 

sustainable modelling capacity within African chemical engineering departments. 
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