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Abstract

r:. Crossref

Purpose: the purpose of this paper is to provide a formal framework for modeling intuition as a
logically definable inferential phenomenon.

Methodology: the study employs a formal and conceptual methodology grounded in non-
relational modal semantics, specifically Resolution Matrix Semantics (RMS). Indeterminate truth
values in RMS are reinterpreted as superposed logical states rather than as epistemic uncertainty.
Each admissible semantic resolution generates a component logic, which is treated as a basis state
in a logical state space. Logical validity is formalized using operator-based semantics, and
acceptance of conclusions is governed by a collapse rule based on semantic support. The
framework is developed through formal definitions and inference rules and is illustrated using
modal and deontic examples. Philosophical analysis is used to assess the implications of the
framework for Godel’s incompleteness theorem and the Penrose argument.

Findings: the paper demonstrates the existence of emergent inferences: formulas that are accepted
in a superposed logical state despite being derivable in none of the component logics individually.
These inferences are formally defined as instances of artificial intuition. The results show that
intuition can be modeled as an interference effect between incompatible logics followed by a
collapse to a stable conclusion. The framework further shows that Godelian incompleteness applies
only to monological formal systems and does not constrain poly-logical superposed reasoning. In
normative applications, the approach provides a non-trivial resolution of conflicting obligations
without logical explosion.

Unique Contribution to Theory, Practice and Policy: the study contributes to theory by
introducing quantum-inspired poly-logic as a novel formal framework that extends classical and
non-classical logics beyond monological reasoning and provides a precise definition of intuition
as emergent inference. In practice, the framework offers a principled architecture for artificial
intelligence systems capable of creative, context-sensitive, and conflict-stabilizing reasoning. At
the policy level, the approach provides a formal basis for managing normative and ethical conflicts
in complex decision-making environments, supporting pluralistic and non-explosive reasoning
under inconsistency.

Keywords: Artificial Intuition, Poly-Logic, Emergent Inference, Non-Relational Semantics,
Quantum-Inspired Reasoning
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1. Introduction
Intuition, Quantum Thinking, and the Superposition of Logics

Intuition is traditionally treated as something elusive and almost mystical: a sudden flash of insight,
a solution that appears “from nowhere,” an act of understanding that seems to bypass explicit
reasoning. In philosophy and psychology, intuition is often contrasted with rational thought: the
former is associated with the subconscious, affect, and heuristic leaps, while the latter is identified
with formal rules, deduction, and algorithmic procedures. On this classical picture, intuition
appears to be inherently non-formalizable and therefore resistant to rigorous mathematical or
logical modeling.

Yet this picture is increasingly being called into question. Over the past decades, a growing body
of work in cognitive science, philosophy of mind, and theoretical physics has challenged the
assumption that human reasoning is fundamentally classical. One influential line of thought
originates in Roger Penrose’s hypothesis (Penrose (1989)). that the human brain may implement
genuinely quantum processes, and that certain forms of understanding — in particular
mathematical insight — cannot be reduced to algorithmic computation. Combined with Godel’s
incompleteness theorem (Gddel (1931)), Penrose’s argument suggests that human cognition
cannot be faithfully captured by any single fixed formal system or Turing-equivalent procedure.

In parallel, a number of authors have proposed that consciousness and cognition may be physically
grounded in quantum-like or even genuinely quantum structures. Most notably, Alexander Wendt
has argued that consciousness can be understood as a macroscopic quantum phenomenon,
embedded in the physical fabric of reality rather than merely supervening on classical neural
computation (Wendt (2015)). At a more operational level, the rapidly developing field of quantum
cognition (Busemeyer & Bruza (2012)) has shown that many empirically observed patterns of
human judgment and decision-making — especially those involving contextuality, order effects,
and violations of classical probability theory — are more accurately modeled using quantum-
inspired formalisms than with classical Bayesian or logical frameworks. Against this background,
intuition no longer appears as a supernatural or irrational faculty. Instead, it begins to resemble a
special regime of information processing, in which the mind does not operate within a single fixed
scheme of rationality, but rather maintains several incompatible interpretive and inferential
frameworks simultaneously.

This observation motivates the central hypothesis of the present paper. When a human agent
confronts a difficult problem, they rarely reason within a single logic or paradigm. Instead,
multiple logical “constraint systems” are active at the same time: different heuristics, normative
principles, causal schemas, modal assumptions, or deontic rules. These systems may be partially
incompatible with one another. They may impose conflicting requirements on what counts as an
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admissible solution, and they may mutually suppress one another’s conclusions. And yet, from
precisely this conflict, a new solution can suddenly emerge — an insight.

Crucially, such an insight is typically not reducible to any one of the paradigms within which the
agent was previously reasoning. It does not belong to any single logic taken in isolation. It is
genuinely new knowledge: a new conclusion that stabilizes the tension among several
incompatible constraint systems. From a philosophical point of view, this gives rise to the classical
puzzle of intuition: where does this new knowledge come from, if it was not contained in any of
the original inferential frameworks?

The present paper proposes a constructive and affirmative answer to this question. We argue that
intuition can be formalized — but not within a single logic and not within classical deductive
closure. Instead, it can be formalized as an interference effect among multiple logics held in a state
of superposition. This idea is developed within what we call quantum-inspired poly-logic (QPL).
In this framework, logics are not treated as fixed normative systems but as basis states of a logical
state space. The cognitive state of a reasoning agent is modeled as a superposition of such logics
with associated weights (amplitudes). Inference then proceeds not only within individual logics
but also through interference between incompatible logical structures.

The key result can be stated succinctly: a superposition of logics can generate conclusions that are
not derivable in any of the component logics. This provides a formal mechanism of emergent
reasoning — a precise analogue of quantum interference, but in logical space. We refer to such
conclusions as artificial intuition: results that do not arise from any single deductive system, but
from the stabilization of conflicts among several logical constraint systems. In this way, intuition
ceases to be an ineffable “black box.” It becomes an operationally definable process: the
interference of logics followed by a collapse to a stable conclusion.

The central thesis of the paper can be summarized as follows. Intuition is not a departure from
formal reasoning; it is a departure from monological reasoning. In a superposed poly-logical
framework, intuitive insights arise as strictly definable interference effects between incompatible
logical structures.

2. Quantum-Inspired Poly-Logic: Formal Framework
From Non-Relational Modal Semantics to Poly-Logic

The conceptual origins of quantum-inspired poly-logic lie in the study of non-relational semantics
for modal logics, and in particular in the framework of Resolution Matrix Semantics (RMS)
developed by Y. Ivlev (Ivlev (1991)) and by the author in earlier work (Kuznetsov (2025)). Unlike
Kripkean semantics, which interprets modal operators by means of accessibility relations between
possible worlds, RMS is based on quasi matrix-style semantic structures with explicitly many-
valued and indeterminate truth values.
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In RMS-based modal logics, formulas are evaluated not only as true or false, but may take one of
several refined truth values. In its basic versions, the semantic domain includes values of the
following form:

e t=indeterminately true, which may further decompose into t,, (true-necessary) or t.(true-
contingent)

e f = indeterminately false, which may further decompose into f, (false-necessary) or
f.(false-contingent)

e t/f = fully indeterminate value.

Thus, a formula may receive an indeterminate value such as t,f, or t/f while at a finer semantic
level it may receive one of the corresponding sub-values t,, t., f, fz-

To make semantic validity well-defined in the presence of such indeterminacy, RMS employs the
idea of a sub-interpretation function. A sub-interpretation is a mapping that selects one determinate
sub-value from each indeterminate truth value. For example, if a formula has value t, a sub-
interpretation chooses either t,,or t..

Formally, if Vis the many-valued valuation function of RMS, then a sub-interpretation o induces
a valuation V. by resolving all indeterminate values into determinate ones. A formula A is defined
to be valid in RMS if and only if it is valid under every admissible sub-interpretation. This
construction ensures that semantic validity is robust under all admissible resolutions of
indeterminacy. Intuitively, a formula is valid only if it survives every possible way of
disambiguating the underlying indeterminate truth values.

From Sub-Interpretations to Poly-Logic

The introduction of sub-interpretations naturally raises a deeper structural question. If semantic
indeterminacy is resolved by considering all possible determinate sub-valuations, what is the
corresponding syntactic or proof-theoretic structure that mirrors this semantic decomposition?

This question leads directly to the idea of poly-logic (PL). Each admissible sub-interpretation
o effectively determines a separate logic L,. For example, one sub-interpretation may treat
necessity as always truth-preserving, while another may treat necessity as suppressing factuality,
and so on.

Thus, an RMS-based modal system can be seen as generating a family of classical or quasi-
classical logics:

L£L={Ly, Ly ..,Ly},

each corresponding to a particular resolution of semantic indeterminacy. This motivates the
following syntactic definition.
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Let £L = {Lq, L,, ..., L,} be a finite family of logics over a common language.
The poly-logic generated by £, denoted PL(L), is defined by:
r |_PL(L) A S Vi (F |_Li A)

That is, a formula A is derivable in the poly-logic if and only if it is derivable in every component
logic. This construction is the exact syntactic analogue of RMS validity under all sub-
interpretations. Just as a formula is RMS-valid only if it is valid under all admissible semantic
resolutions, a formula is PL-derivable only if it is derivable under all admissible logical
resolutions.

The poly-logical viewpoint makes it possible to construct logical systems as intersections of
simpler logics. In such constructions, each component logic corresponds to a specific resolution
of semantic indeterminacy in the underlying RMS framework.

The Classical Limitation of Poly-Logic

Despite its conceptual elegance, poly-logic remains a fundamentally classical construction. Indeed,
by Definition 2.1, if a formula A fails to be derivable in even a single component logic L;, then it
fails to be derivable in the poly-logic as a whole:

3i (T ¥y, A) = T Wpypy A
Thus, poly-logic behaves like a strict intersection:
e itcan only lose derivable formulas relative to its components;
« it can never generate new derivable formulas.

In this sense, poly-logic remains conservative and monotonic. It merely filters derivability through
multiple logics but never transcends them.

Indeterminate Truth Values as Superposed States

The crucial conceptual shift consists in reinterpreting indeterminate truth values not as incomplete
information, but as superposed logical states. Instead of treating a value such as t as a placeholder
for “either t,,0r t., but we do not yet know which,” we treat it as a genuine superposition:

t = alt)+BI1t)lal®>+lpI?=1.

On this interpretation, logical values are not merely epistemically uncertain; they are ontologically
indeterminate in a structural sense, prior to measurement or resolution. This move is directly
analogous to the reinterpretation of classical probabilities as quantum amplitudes. Before
measurement, a quantum system is not in one determinate state; it is in a superposition of states.
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Likewise, before semantic resolution, a formula with an indeterminate RMS value is not in one
determinate logical state; it is in a superposed logical state.

Logics as Basis States of Logical Space

Once indeterminate truth values are reinterpreted as superpositions, a further step becomes natural.
Each admissible sub-interpretation — and hence each admissible component logic L;— can be
treated as a basis state of a logical state space.

Formally, let:
H, =span{ | L1),1 Ly), ..., | L) }

be a Hilbert-like space whose basis vectors correspond to component logics. A logical state is then

a normalized superposition:
n n
| q") = Zdi | Li)jz Ial- |2: 1.
i=1

i=1
The coefficients a;are complex or real amplitudes encoding the relative dominance or weight of
each logic in the current reasoning context.

To evaluate formulas in a superposed logical state, we introduce a family of diagonal operators.
Definition 2.2 (Validity Operator)
For any formula A, define the operator V,on #, by:
I7:4 | L) = XLi(A) | L),
where:

1 1if A is derivable in L;
(4) = . v
XLL( ) {0 otherwise.

This operator acts as a projector onto those component logics in which A is derivable.
Semantic Support of a Formula

The degree of semantic support of a formula A in a superposed logical state | W)is defined as the
expectation value of its validity operator:

S = (174 19) = D 1y I 1, (4).

This quantity lies in the interval [0- 1]. It generalizes classical validity:

e IfS(A) =1, then A is derivable in all component logics.
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e If S(A) = 0, then A is derivable in none of the component logics.

e If0<S(A4) < 1,then Ais derivable with the degree to which a formula is supported by a
superposed family of logics.

Finally, to recover determinate judgments from superposed logical states, we introduce a collapse
rule.

Definition 2.3 (Collapse to Action)
Fix a threshold parameter 7 € (0,1].
A formula A is accepted in a superposed logical state | W) if and only if:
S(4) = 1.
We write:
FopLr AIff S(A) > 7
3. Emergent Inference and Artificial Intuition
The Classical Closure Principle and Its Failure

In all standard logical frameworks, inference is governed by a closure principle of the following
form: if a formula A is not derivable in a logic L, then A is not derivable at all within that
logical framework.

More precisely, for any fixed logic L and any formula A:
L #+ A = there is no purely logical mechanism by which A can be obtained.

This principle underlies both classical logic and virtually all non-classical logics. Even in many-
valued, paraconsistent, or probabilistic systems, inference remains monological: all derivations
take place inside a single fixed logical structure. The same is true for classical poly-logic as
introduced in Section 2:

I |_PL(L) AS Vi (F |_Li A)
Hence:
3i (F |7LLi A) =T |7LPL(L) A.

Thus, classical poly-logic can only lose derivable formulas. It can never generate new ones. It is
conservative, monotonic, and strictly subordinate to its component logics. The quantum-inspired
poly-logical framework violates this principle.

Superposed Acceptance and Classical Closure

Let:
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n

W)= ) eI L)

i=1
be a superposed logical state over a family of component logics £ = {Lq, ..., L, }.

Recall that.

SCAY = (W 174 1%) = )l 2 1, (4),

and that acceptance is governed by:
ForLr Aiff S(A) = 7.
Now suppose:
FopLr A1, s FopLr Ak
and that:
FeL (AL A AAg) - B.

Since all classical tautologies are valid in every component logic, closure under classical
consequence Yyields:

|_QPL,‘L' B.

Crucially, B need not be derivable in any component logic.
Definition 3.1 (Emergent Inference)

A formula B is emergently derivable in QPL if and only if:
1. btqpL: B,
2. Vi (L; # B).
This violates the monological closure princinple
A Canonical Modal Example: Reflexive Versus Anti-Reflexive Logics

We now present a minimal and conceptually transparent example showing emergent inference in
QPL.

Component logics
Let:

e L, = KT, areflexive modal logic satisfying axiom T:

L, + (Op - p). (D
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e L, = KT, an anti-reflexive modal logic satisfying:
L, + (op = —p). (=7)
These logics encode mutually incompatible principles about necessity:

e in Ly, necessity preserves truth;

e in L,, necessity suppresses factuality.
Let:

C:= —0Op.
We observe that:
L, ¥ —0Op, L, ¥ —0Op.

Neither the reflexive nor the anti-reflexive system by itself entails that p is not necessary. However,
from the conjunction of the two modal principles we obtain:

(Op » p) A(@p = —p) k¢ —Op.

Indeed:
(@p->p)A@p~->-p) - (@p—(@A-p)) + —0Op,
using the classical tautology —(p A —p).

Superposed logical state

Let:
Wy =alLl)+B L) lal>+ BI°=1
Define:
A:= (Op — p),B:= (Op - —p).

Then:

XLl(A) = 1’XL2 (A) = OI

X, (B)=0,x,(B) =1
Hence:

S(4) =l a|?,S(B) =I B I
Choose any threshold 7 such that:

7 <min(l a %18 I?).
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Then:
Fqprc A, Fqpr: B
By classical closure:
FqpL,: —OP.
Yet:
Ly ¥ —0Op, L, ¥ —0Op.

Therefore, we get:

|_QPL,‘L' —0Op AVi (Ll H _IDp)

Thus —Op is emergently derivable in QPL.
Now we are ready to give the following definition of artificial intuition.
Definition 3.2 (Artificial Intuition)
A formula B is an instance of artificial intuition if:
1. Bisemergently derivable;
2. B stabilizes a conflict between jointly accepted principles;
3. no component logic derives B.
In the above modal example:
« A= (Op - p)and B = (Op — —p) encode incompatible modal constraints;
« their joint acceptance produces the stabilizing conclusion —oOp;
« neither logic alone produces this result.
Logical Interference

The modal example shows explicitly that:
Cn(i:aiLi ) - Z‘:aiCn(Li).
This non-distributivity is the logical analogue of quantum interference.

4. Godel, Penrose, and the Limits of Monological Rationality

Godel’s Incompleteness Theorem and Its Philosophical Reading
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Kurt Godel’s first incompleteness theorem (Godel, K. (1931)) establishes that any sufficiently
expressive, consistent, and recursively axiomatizable formal system Fis incomplete. That is, there
exists a sentence G such that:

F |7L GF andF }7L _lGF,
while Gris true in the intended interpretation of arithmetic. Formally:
Godel (1931).

If F is consistent, effectively axiomatizable, and capable of representing a sufficient fragment of
arithmetic, then Fis incomplete.

From a purely mathematical point of view, this is a precise result about the structure of formal
theories.

From a philosophical point of view, however, Gddel’s theorem has often been interpreted much
more broadly, as establishing a fundamental limitation of all formal reasoning. In particular, it has
been taken to support the claim that no formal system can capture the totality of mathematical
truth. This interpretation plays a central role in arguments about the nature of human
understanding.

The Penrose Argument

Roger Penrose famously used Godel’s theorem to argue that human cognition cannot be
algorithmic (Penrose, R. (1989)). The core of the Penrose argument can be summarized as follows:

1. Any algorithmic theory of the mind corresponds to some formal system F.

2. By Godel’s theorem, there exists a true sentence G that is unprovable in F.

3. A human mathematician can nevertheless “see” that G is true.

4. Therefore, human understanding cannot be equivalent to any algorithmic formal system.

Regardless of whether one accepts the details of this argument, it has exerted enormous influence
on philosophical discussions of artificial intelligence, formal reasoning, and the nature of
mathematical insight. What is crucial for the present work is not whether Penrose’s conclusion is
correct, but which hidden assumptions his argument relies on.

The Hidden Assumption: Monological Rationality

Both Godel’s theorem and the Penrose argument presuppose what may be called monological
rationality: rational inference takes place inside a single fixed formal system. More precisely, the
Gdodel-Penrose framework presupposes that:

1. There is a single formal system F that governs all legitimate inferences.

2. F isrecursively axiomatizable.
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3. Fisconsistent.
4. Inference in F is purely syntactic.

Under these assumptions, Godel’s theorem applies, and incompleteness follows. The key
observation of the present paper is that quantum-inspired poly-logic violates all four of these
assumptions.

Why Godel’s Theorem Does Not Apply to QPL
Let us examine, one by one, the conditions under which Godel’s theorem is derived.
(1) No single fixed formal system

In QPL, reasoning does not take place inside a single logic L, but inside a superposed logical state:

n

|‘~IJ)=Zai|Li).

i=1
There is no privileged or permanent background logic. The logical state may change dynamically

as amplitudes are updated or new component logics are introduced. Thus, QPL is not a single
formal system F in the Godelian sense.

(if) No recursive axiomatization
The derivability relation of QPL depends on:
« the set of component logics {L;},
o the amplitudes {«;},
« the collapse threshold t,
« and the dynamically accepted set of formulas.

There is no effective procedure that enumerates all and only the accepted formulas of QPL in
advance. Hence QPL is not recursively axiomatizable.

(iii) No global consistency requirement

In QPL, logical incompatibility is not forbidden. Different component logics may encode mutually
inconsistent principles.

For example, in Section 3:
Ly = (@p - p), Ly + (@p = —p).

These principles are jointly accepted in a superposed logical state, even though they are
incompatible. Thus, QPL does not impose global consistency in the Gddelian sense.

(iv) Inference is not purely syntactic
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In QPL, inference depends not only on syntactic derivability but also on:
o amplitudes | ; 12,
e expectation values S(A),
o collapse thresholds z.

Thus, inference is not a purely syntactic operation.

Since QPL violates all of Gddel’s background assumptions, Godel’s incompleteness theorem
simply does not apply to it. This is not a loophole or a technical trick. It reflects a genuine structural
difference between monological and superposed rationality.

Gdodelian Phenomena Reinterpreted in QPL

Although Gddel’s theorem does not apply to QPL as a whole, Godelian incompleteness still arises
inside each component logic. For each logic L;capable of representing arithmetic, there exists a
Gadel sentence G; such that:

Li H Giand Li e —lGi.

Thus, incompleteness is not eliminated. It is distributed. However, once we consider a superposed

logical state:
W)= a1 L)

L

the Godelian limitations of individual logics no longer constrain inference in the same way. It
becomes possible for a formula G, constructed as a stabilizing consequence of several Godel-
undecidable statements across different logics, to be accepted in QPL even though no single
component logic proves it. In other words: what is undecidable in every component logic may
become decidable in their superposition. This is exactly the same structural mechanism that
produced emergent inference in Section 3.

Artificial Intuition as a Godel-Transcending Phenomenon

We are now in a position to give a precise logical meaning to the Penrose intuition. The classical
reading of Godel suggests: there exist truths that no formal system can prove. The QPL reading is
subtler: there exist truths that no single formal system can prove, but that become accessible in a
superposition of formal systems.

Thus, intuition is not a mysterious faculty that escapes formalization. It is the ability to move from
monological to poly-logical rationality. Formally:

Vi (Ll |7L A) but |_QPL,T A

A Constructive Response to Penrose

44



International Journal of Computing and Engineering
ISSN 2958-7425 (online)
Vol. 8, Issue No. 2 pp 32 — 48, 2026 www.carijournals.org

The Penrose argument can now be reformulated and answered constructively. Penrose is right that
no single recursively axiomatizable system can capture all mathematical insight. But the correct
conclusion is not that human understanding is non-formal. Rather, the correct conclusion is:
human understanding is not monological. In other words, human reasoning does not operate
inside a single formal system. It operates in a dynamically evolving superposition of multiple
formalisms. QPL provides a precise formal model of this process.

The deep moral of Godel’s theorem is not that formalization fails. It is that monological
formalization fails. Once we abandon the assumption that rationality must live inside a single
fixed logic, Godel’s pessimistic conclusion disappears. In its place we obtain a stronger and more
optimistic thesis: formal reasoning can be both rigorous and creative, provided it is allowed to be
poly-logical and superpositional.

In the next section, we discuss the broader implications of quantum-inspired poly-logic for
artificial intelligence, cognitive science, and the theory of rational agency, and outline how
artificial intuition can be implemented as a concrete reasoning architecture.

5. Limitations, Objections, and Future Work
Is QPL Just Probabilistic Reasoning in Disguise?

A natural first objection is that quantum-inspired poly-logic is merely a notational variant of
probabilistic logic or Bayesian aggregation. After all, the semantic support of a formula A is
defined as:

S = ) P x,(4),

which superficially resembles a probability-weighted vote among component logics. However,
this interpretation is misleading. First, the coefficients | «; |%are not degrees of belief in the truth
of A.

They are weights attached to entire inferential systems. Second, acceptance in QPL is not epistemic
but structural. A formula is accepted not because it is likely to be true, but because it is supported
by a sufficiently large portion of the logical state space. Third, and most importantly, emergent
inference in QPL depends on classical closure over jointly accepted formulas, not on
probabilistic_updating.

The new conclusions arise from logical interference between incompatible principles, not from
statistical aggregation. Thus, QPL is not a probabilistic logic. It is a logic of superposed normative
and inferential frameworks.

Is QPL Just Paraconsistent Logic?

A second objection is that QPL is merely a paraconsistent logic in disguise. After all, QPL allows
the joint acceptance of incompatible principles such as:
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O(E — S)and O(C — —S).

However, this analogy is also misleading. In paraconsistent logics: contradictions occur inside a
single logic; explosion is blocked syntactically. In QPL: no contradiction ever occurs inside any
component logic; incompatibility exists only across logics; explosion is avoided structurally, not
syntactically. Therefore, QPL does not weaken classical logic. It preserves classical inference
inside each component logic. What it changes is the meta-logical architecture of reasoning.

Does QPL Really Escape Godel?

A further objection concerns the Gédel discussion in Section 4. One might argue that QPL does
not really escape incompleteness, but merely relocates it. This objection is partly correct. Godelian
incompleteness still arises inside each component logic L;. What QPL changes is not the existence
of incompleteness, but its scope. QPL does not produce a single complete formal system. It
produces a dynamic superposition of incomplete systems whose joint behavior is not itself
recursively axiomatizable. Thus, QPL does not refute Godel. It dissolves his conclusion by
abandoning monological rationality.

Is QPL Physically or Biologically Realistic?

Another obvious question is whether QPL corresponds to anything physically or biologically real.
Is the brain actually a quantum computer? Are there literal amplitudes in neural tissue? QPL does
not require affirmative answers to either question. QPL is a structural and logical model. It makes
the minimal claim that: human reasoning behaves as if it were governed by superposition and
interference of logics.

Whether this superposition is implemented by quantum processes, classical parallelism, neural
dynamics, or by symbolic-subsymbolic hybrid architectures, is an empirical question. Thus, QPL
is compatible both with Penrose-style quantum realism and with purely classical computational
realizations.

The Status of Artificial Intuition

A deeper philosophical objection is this: have we really explained intuition, or merely renamed it?
The answer is: partially. QPL does not explain why a particular insight arises at a particular
moment.

It does not predict creative breakthroughs. What it does provide is:

o aformal structure in which such breakthroughs can exist,
e aprecise definition of emergent inference,
e aconstructive mechanism for insight.

Thus, QPL does not eliminate the mystery of creativity. It gives it a logical habitat.
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Future Work: Mathematical Foundations
Several formal questions remain open.
1. Axiomatization of QPL: can QPL be characterized as a non-distributive closure operator?
2. Completeness theorems: under what conditions does emergent inference necessarily arise?
3. Dynamics of amplitudes: what update rules preserve coherence and avoid triviality?
4. Operator algebra: can validity operators be generalized to non-diagonal forms?
Future Work: Applications
Several application domains are natural candidates for QPL.
1. Deontic and legal reasoning: norm conflict, exceptions, and equity.
2. Ethical Al: value pluralism and moral dilemmas.
3. Scientific discovery: paradigm conflict and theory change.
4. Creative problem solving: insight and heuristic emergence.
5. Hybrid neuro-symbolic Al: symbolic logics + amplitude dynamics.

Quantum-inspired poly-logic should not be seen as a finished theory. It is best understood as a
research program. Its central proposal is modest but radical: rationality is not monological. It is
poly-logical and superpositional. From this single shift, artificial intuition, emergent inference, and
conflict stabilization follow as formal necessities.

6. Conclusion

This paper introduced quantum-inspired poly-logic (QPL) as a logical framework for modelling
artificial intuition. The central claim is that rational inference need not occur within a single fixed
logic; reasoning can instead proceed in a superposition of logics, where conclusions emerge
through their interaction.

QPL originates in Resolution Matrix Semantics (RMS), where indeterminate truth values are
resolved across families of interpretations. Reinterpreting such indeterminacy as logical
superposition allows component logics to function as basis states of a logical space. A reasoning
agent’s cognitive state then becomes a superposition of logics, with acceptance defined by a
collapse rule grounded in semantic support. This produces emergent inference: conclusions
accepted at the superposed level despite being derivable in none of the individual logics. Artificial
intuition is identified precisely with this stabilizing emergence.

QPL also reframes Gddelian incompleteness and normative conflicts. Incompleteness becomes
local to component systems rather than global, while conflicting normative frameworks can yield
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stable emergent norms without logical explosion. More broadly, rationality shifts from consistency
within one system to stability across multiple systems.

On this view, intuition is not an escape from logic but its next structural form. Once reasoning is
allowed to operate across logics rather than within one, artificial intuition emerges not as mystery,
but as a formal consequence.
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