

International Journal of Supply Chain and Logistics

(IJSCL) Operations Management Mapping and Performance of
Large Manufacturing Firms in Kenya Moderating Role of
Information Technology Integration

CARI
Journals

Operations Management Mapping and Performance of Large Manufacturing Firms in Kenya Moderating Role of Information Technology Integration

^{1*}Peter Mugo Wangai, ²Dr. Anthony Osoro, ³Dr. Elizabeth Wachiuri

¹PhD Student, Jomo Kenyatta University of Agriculture and Technology

^{2,3}Lecturer, Jomo Kenyatta University of Agriculture and Technology

<https://orcid.org/0009-0006-0028-8181>

Accepted: 24th Dec, 2025, Received in Revised Form: 10th Jan, 2026, Published: 18th Jan, 2026

ABSTRACT

Purpose: This study explored the relationship between operations management mapping and performance of Large Manufacturing Firms in Kenya. The study also analyzed the moderating effects of information technology integration on relationship between operations management mapping and performance of Large Manufacturing Firms in Kenya.

Methodology: The study adopted cross sectional research design. The target population was 533 managers working in supply chain, production and finance departments in large manufacturing firms in Kenya based on the 14 sectors obtained from Kenya Association of Manufacturers. The study used stratified random sampling to select a sample of 322 managers from finance, production, and supply chain. Primary data was collected through use of questionnaires. 10% of the sample size was piloted to test for validity and reliability of the research instrument. Data collected was analysed using SPSS version 26. Descriptive and inferential statistics was used to analyse the data. The findings were presented in tables and figures.

Findings: The study concluded that operations management mapping positively and significantly influences performance of large manufacturing firms in Kenya. The study concludes that information technology integration has significant moderating effect on the relationship between operations management mapping and performance of Large Manufacturing Firms in Kenya.

Unique Contribution to Theory, Policy and Practice: The study contributes to theory, policy, and practice by extending the Theory of Constraints to demonstrate how operations management mapping improves firm performance through effective identification and management of operational bottlenecks in large manufacturing firms. Practically, the study offers guidance to manufacturing managers on aligning operations management mapping with information technology systems to enhance efficiency, coordination, and overall organizational performance

Keywords: *Operations Management Mapping, Performance, Manufacturing Firms, Information Technology Integration*

1.0 INTRODUCTION

In an ever-changing business environment, organizational performance remains the central focus in utilizing value chain management. Manufacturing firms, too, operate in a dynamic market that motivates the utilization of models such as value chain management to achieve superior performance (Kurniawati & Susanto, 2021). For manufacturing firms to increase supply chain efficiency and operational flexibility, third-party logistics (3PL) services are crucial. By outsourcing logistics services like transportation, warehousing, inventory management, and order fulfillment, manufacturers can focus on their core production responsibilities while utilizing the expertise, state-of-the art technology, and scalable solutions offered by specialized 3PL providers (Mahmood & Baki, 2020). Manufacturers may improve delivery times, save expenses, optimize their supply chain processes, and respond faster to market shifts thanks to this partnership. Additionally, value-added services like assembly, packaging, and reverse logistics are commonly offered by 3PL vendors, which boost productivity and further simplify operations (Abade et al. 2024). According to Chia and Tan (2022), value chain mapping impact firm performance in Thailand. Inventory management mapping especially inventory control and order processing, influence firm performance in manufacturing sectors (Pude *et al.*, 2021).

The introduction of new technological innovation has allowed access to real-time, up-to-date information across the entire supply chain, which is having a significant impact on how organization are doing and expect to do business (Jafari & Aliakbari, 2020). Integration of information technology is informed by the need to allow quicker and easier connectivity between suppliers and their customers. It enhances the visibility of the customers whose needs and expectations are changing with regards to response times, delivery times, and transparency. Several studies have found that organization that has implemented IT integration have enhanced information sharing and may benefit in various ways, which include a reduction in inventory levels, operational costs, automation of routine functions, better data documentation, and communication (Muhamad & Lukmandono, 2021).

The importance of information technology integration as a strategic constituent of Supply chain integration (SCI) is highlighted, as offering an enabling solution for smooth operations in the organization. Information technology integration facilitates the members to exchange information as well as enables real-time information sharing, thus increasing visibility (Soni & Purohit, 2020). She has introduced the concept of Integrative Information Technology in the context of SCI and has defined it as being the technology that enables the collection of relevant information relating to critical business processes while ensuring that the same is shared across all functional areas as well as across the firm boundaries (Kumar & Sharma, 2020). From the above definition, IT integration is essential in ensuring internal and external integration. Information systems are essential to managing the supply chain integration, also referred to as the glue that holds the chain together. Organizations are appreciating the increasing need to automate all the SCI processes to

enable visibility. Information Technology integration is vital in enabling the linkage of downstream and upstream which in the government involves public procurement (Muhammad et al. 2020).

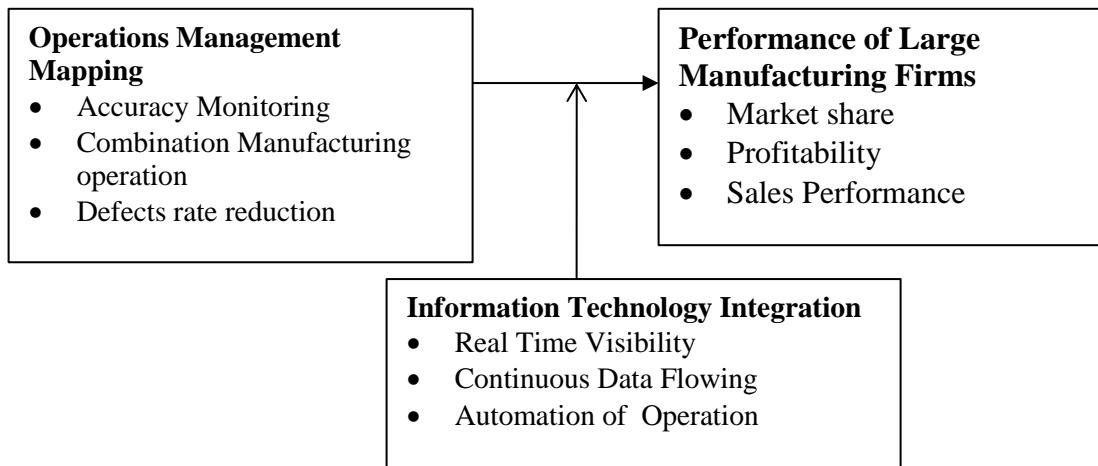
1.1 Statement of the Problem

In Kenya, Manufacturing growth for the period 2028-2024 can be said to be erratic. Over the period, lowest manufacturing growth rates were registered in 2012 and 2024 at 0.6% and -0.1% (Nyonges & Chege, 2020). Tile and Carpet Centre indicated plans for redundancies within its production department starting December 6, 2024, citing economic constraints and a decline in production demand as reasons for restructuring due to increased operational costs, inefficiency in manufacturing processes and outbound and distributions challenges. Cadbury Kenya closed down its manufacturing plant in Nairobi after its net profits fell by 58.7 per cent to \$493,237 from \$784,783 while Eveready Ltd reduced its production capacity to 50 million units annually, down from a previous high of 180 million per year (RoK, 2024). On the other hand, Tata Chemicals Magadi scaled down its operations by closing down its main factory. Management in manufacturing have focus on value chain mapping in an effort to achieve set performance goals with emphasize being on lead time, value-added activities, and a process cycle efficiency and improvement actions being executed to achieve waste, increase competitiveness and firm performance(Abade, et al. 2024). However, it remains unclear the extent to which value chain mapping contribute to performance in large management firms in Kenya.

Integration of information technology in value chain mapping has gain momentum as firm sought measure to achieve performance goals (Okumu & Bett,2022). Value chain Mapping information technology integrated aims to identify and eliminate waste throughout the system, minimize resources used, and optimize organizational performance. Abade et al. (2024) asserted that IT moderated supplier capability to aching performance of food and beverage manufacturing firms in Kenya. However, the role played by it integration in value chain mapping and firm performance in manufacturing industry in Kenya has not been established. This motivates the current study to determine the moderating effect of IT integration in the relationship between operation mapping and performance in large manufacturing firms in Kenya.

2.0 Theoretical Review

The TOC was developed by Goldratt in 1980 as a way to manage the limiter that prevents the manufacturing companies from achieves performance (Demircioğlu et al., 2022). TOC assumes that to provide continuous improvement via managing and mapping value chains to achieve efficiency and overall performance (Salwin et al.2023). The theory of constraints assumes firm focuses on identification of value chain mapping constraints, making decisions to gain from the mapped value chains and promote value chain mapping . Teixeira and Pereira (2021) say that TOC has the proposal to improve manufacturing processes to improve processes; the company needs to work on the restrictive element of the process, the so-called bottleneck. With the


application of TOC gains such as reductions in inventory and operating expenses, thus increasing profitability (Touzett-Cabellos et al., 2024). To increase productivity and eliminate possible wasted time and resources with the TOC, a well-designed method can improve operation efficiency, increasing the productivity or decreasing the working in progress inventory. In a given manufacturing process, throughput is increased when cycle time is reduced and tat work in progress decreases when the cycle time and throughput are reduced.

The VCOR model was developed from the perspective of being a value chain framework with the development of Seven Performance Attributes linking the three domains of Product Development, SCM and Customer Chain across the supply networks together. IT integration within the Value Chain Operations Reference (VCOR) framework is crucial for enabling seamless information flow, collaboration among trading partners, and the development of robust, adaptive business models. The VCOR model, an extension of the Supply Chain Operations Reference (SCOR) model, focuses on integrating the concepts of the entire value chain (including product development, SCM, and customer chain) to manage processes from a customer-centric point of view. IT Integration in VCOR enables collaborations, foster flow of information, support virtuals firms, enable system integrations, ease decision making, enhance flexibility and adaptability (Sautma et al.2024).

The Resource-Based View (RBV) arose from a diversion since the early 1980's towards considering internal resources and capabilities as the primary source of competitiveness. Barney (2007) developed the resource-based theory around the internal competencies of firms and turned the interest of strategic management towards the inside of the firm. According to RBV competitive advantage is rooted in a firm's assets that are valuable and inimitable (Sadikin, 2023). The new perspective expects firms to compete based on their unique or distinctive internal capabilities, competencies and resource capabilities. A firm's capabilities or competencies and management ability to marshal the resources and their deployment patterns to produce superior performance determine competitive advantage (Naas & Berass , 2025).

2.1 Conceptual Framework

In this study, the conceptual framework shows the expected relationship between the dependent, moderating and the independent variables. The independent operation management mapping., moderating variable is information technology integration while the dependent variable is performance of the manufacturing firms. Figure 1 shows the conceptual framework for this study.

Independent Variables

Moderating Variable

Dependent Variable

Figure 1: Conceptual Framework

2.2 Empirical Review

Sudarmi and Sunaryo (2024) assessed the relationship between enhancing inventory accuracy and operational performance with ER across industries. This narrative review explores the role of Enterprise Resource Planning (ERP) systems in enhancing inventory management across industries. Drawing from empirical studies, theoretical reviews, and case applications over the past 15 years, it highlights how ERP systems improve operational efficiency, inventory accuracy, and supply chain responsiveness. The results also revealed that execution of enterprise resource planning system contribute significantly to operational efficiency in manufacturing firms, inventory accuracy, optimization stock handling and operational cost reduction within industrial enterprises, offering greater flexibility in production scheduling and faster product delivery cycles and shortened order cycle times in manufacturing firms.

Gutiérrez-Broncano et al. (2024) explored the influence of combined of manufacturing operations on performance of SMEs in Spain. The study aims to examine the impact of hybrid strategy on firm performance through its anticipated positive effects on process and product innovation. The study also assessed moderating role of adaptive capacity in the direct relationships of hybrid strategy with process and product innovation. Structural equation modelling was used to analyse 1,842 Spanish firms with fewer than 250 employees. We randomly selected small and medium-sized enterprises (SMEs) operating in Spain from the Spanish Central Business Directory (2021) database. The overall sample design was based on stratified sampling. The study revealed that combined operations is positively related to SMEs performance and to process and product innovation in Spain.

Touzett-Cabellos, et al. (2024) explored the extent defect reduction contributed to competitiveness and operational efficiency in the Peruvian Textile Industry through Lean Manufacturing. The study focused on case study on reducing defects and improving efficiency in Peruvian textile sector, representing 7.2% of the manufacturing GDP and providing approximately 422,000 jobs annually, faces significant challenges due to high defect rates and process inefficiencies. The results demonstrated notable improvements, including a reduction in the defect rate from 18% to 5%, an increase in 5S audit scores from 65% to 81%, and a decrease in the rework rate from 20% to 7%. The outcomes highlighted the model's effectiveness in enhancing productivity, quality, and operational efficiency, ultimately contributing to the competitiveness of the Peruvian textile industry.

An empirical review by Sautma et al. (2025) assessed the impact of technology information integration in the relationship between supply chain quality and supply chain resilience and firm performance in manufacturing firms. Collection of data was from the manufacturing companies in Java using purposive sampling found 162 companies that had received ISO certification. Middle managers were the respondents who had experience of at least three years. Data processing used partial least squares version 4 to answer all research hypotheses. The results revealed that information technology integration has a significant impact on supply chain quality integration by 0.588 and supply chain resilience by 0.523 and had no significant effect on increasing firm performance. Supply chain quality integration influences supply chain resilience by 0.288 and increases firm performance by 0.496.

3.0 RESEARCH METHODOLOGY

This study adopted cross-sectional research design (Mikkelsen, et al, 2020). A cross-sectional study is a type of research design in which you collect data from many different individuals at a single point in time. In cross-sectional research, you observe variables without influencing them. Additionally, cross-sectional studies have been found to be robust for effects of relationships studies. This design was chosen because it applies closely to the research objectives of this study and is practical in testing the study hypotheses testing hypothesis value chain mapping has no significant influence on performance of large manufacturing firms in Kenya.

The foundations of positivism can be found in empiricism, which states that all factual knowledge depends on positive information received through observable experiences (Giorgi, 1970). Only analytic propositions can be recognized as accurate via reason. Positivism holds that knowledge should be founded on facts rather than abstractions; hence knowledge is founded on observations and experiments based on current theory. In the positivist paradigm, an epistemological study is how the social world can be explored as natural science. Hypotheses must be tested using empirical methods. Target population is the entire set of individuals (or objects) having the same characteristics as pointed out in the sampling criteria used for the study. The target population makes a part of the universal population (Bell, et al., 2020). According to KAM (2022), there are

533 large manufacturing firms in Kenya. Slovin's formula is used in statistical analysis as a tool to determine the sample size of 322 large manufacturing firms in Kenya. The study's research instruments used both structured and semi-structured questionnaires. The semi-structured questions give respondents freedom of expression while in structured questions, respondents are limited to the five-point likert scale questions. The data collected was quantitative and qualitative in nature. The analysis of quantitative data was done using descriptive statistics including frequencies and percentages. Mean and standard deviations were also used to describe the distribution of the various responses (Dey, & Bhattacharya, 2020). The study also computed inferential statistics which include correlation and regression analysis.

The Multiple regression model took the form;

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \epsilon \dots \dots \dots \text{Equation 1}$$

Whereby; Y = Performance of Large Manufacturing firms (Dependent Variable)

β_0 = constant

β_1 = The coefficients of all Independent Variables

X_1 = Operations Management mapping

ϵ = Error Term

The moderating effect was tested using model 3 as follows;

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1 M + \epsilon \dots \dots \dots \text{Equation 3}$$

Where, M = information technology integration (moderating variable)

$X_1 M$ = the interaction between independent variable and the moderating variable

4.0 RESEARCH FINDINGS AND DISCUSSIONS

4.1 Introduction

This chapter presents data analysis, interpretation of results and presentation of study's findings in relation with the general and the specific objectives of the study. The general objective of this study is to establish the relationship between operation management mapping on performance of large manufacturing firms in Kenya. The sample size of this study was 322 and it comprised of supply chain managers, finance manager and production manager respectively. The researcher distributed 322 questionnaires to the respondents during data collection process and 322 were fully filled and returned to the researcher thus making a response rate of 100%. That a response rate which is more than 50% is considered adequate while excellent response rate is usually above 70%. This implies that the response rate in this research is good for making conclusions as well as recommendations.

4.2 Operations Management Mapping and Performance of Man. Firms

Descriptive statistics frequencies, mean, and standard deviation were deployed to establish the trend and status of operations management mapping in large manufacturing aimed at achieving performance of large manufacturing firms in Kenya. From the results in Table 1. 41.6% of the respondents agreed that there is accuracy in manufacturing processes well monitored , 23.3% strongly agreed while 35.1% of the respondents were neutral . On average, respondents agreed that there was monitoring of accuracy in manufacturing processes as supported by a mean of 3.8820 and standard deviation of 0.75611. This clearly indicate that monitoring of accuracy in manufacturing processes to achieve performance in large manufacturing firms in Kenya. The results in Table 1. 52.5% of the respondents agreed that there are combined production lines to minimise downtimes 36.3% strongly agreed while 11.2% were indifferent. on an average, respondents agreed ($M=4.2516$, $SD=.64277$) that there is combined production lines to minimise downtimes in large manufacturing companies in Kenya.

From the results in Table 1, majority (62.7%) of the respondents strongly agreed ($M=4.6273$, $SD=(.48427$ that defection points are eliminated reducing defection rate in large manufacturing firms in Kenya while 37.3% of the respondents agreed. The results clearly demonstrated that through elimination of defection points manufacturing firms reduces defection rate adding value in manufacturing processes.

From the results in Table 1, most (44.4%) of the respondents agreed, 42.2% agreed while 13.4% of the respondents were neutral. The results demonstrated that there was utilization of cross-functional collaboration to save on costs in large manufacturing firms in Kenya. The findings in Table, 1. average, the responders agreed ($M=4.3137$, $SD=0.66351$) agreed that there is proper storage of products in large manufacturing firms in Kenya. Redesigning of operations is key in value mapping in value chain in manufacturing firms. From the results in Table 1., majority (75.8%) strongly agreed that redesigning of operations is done to achieve decrease in operation time as supported by a mean of 4.7578 and standard deviation of .42910.

From the results in Table 1. respondents agreed ($M=4.3851$, $SD=.48737$) that perfect order delivery is deployed in manufacturing firms while 38.5% of the respondents agreed. The was evidence that in mapping value chain, manufacturing firms were deploying perfect order delivery in an effort to achieve performance level expected. From the results, majority of the respondents strongly agreed as supported by a mean of 4.7174 with a standard deviation that there is implementation of production planning while 28.3% agreed. From the results, respondents agreed that there is purchase order tracking in manufacturing firms clearly indicated that through purchase order tracking , operational management mapping was executed to achieve set performance goals in large manufacturing firms in Kenya

Effective production scheduling is a critical value mapping aspects in operation management in manufacturing firms. The results in Table 1. Most respondents strongly agreed that there is

effective production scheduling in operational management mapping in large manufacturing firms in Kenya, ($M=4.3882, SD=0.65680$) that there is effective production scheduling clearly indicated that there is effective production scheduling in large manufacturing firms in Kenya. Salwin, Pszczołkowska, Pałęga, Kraslawski 2023) revealed that operation allowed for the optimization of the production process in terms of economy and energy consumption.

From the results, majority of the respondents strongly agree that there is waste reduction in manufacturing processes. On average, respondents strongly agree waste reduction in manufacturing processes in large manufacturing firms as indicated by a mean 4.5062 with a standard deviation of 0.66625. Further, from the result, most of the respondent agreed ($m=4.2578, SD=.43808$) that effort are made to achieve inventory optimization while 25.8% strongly agreed that effort are made to achieve inventory optimization in operational management mapping to achieve performance in large manufacturing in Kenya. Al-Debei et al.(2020) aimed to investigate the impact of cross-functional coordination (cross-functional system, process and team coordination) on customer coordination (customer strategic and operational coordination) and operational performance and revealed that cross-functional system coordination is positively associated with customer operational coordination (COC) but not customer strategic coordination (CSC). Cross-functional process coordination increases both customer strategic and operational coordination

Table 1: Operations Management Mapping and Performance of Large Man. Firms

Statements.	Mean	Std. Dev
Accuracy in manufacturing processes is monitored	3.8820	.75611
There is combined production lines to minimize downtimes	4.2516	.64277
Defection points are eliminated reducing defection rate	4.6273	.48427
The firm utilize cross-functional collaboration to save on costs	4.3106	.69476
There is proper storage of product	4.3137	.66351
Redesigning of operations is done to achieve decrease in operation time	4.7578	.42910
Perfect order delivery is deployed in our firm	4.3851	.48737
There is implementation of production planning	4.7174	.45097
There is purchase order tracking	4.2081	.51476
There is effective production scheduling	4.3882	.65680
There is waste reduction in manufacturing processes	4.5062	.66625
Effort are made to achieve inventory optimization	4.2578	.43808

4.3 Information Technology Integration and Performance of Large Man. Firms

The study assesses the extent of technology integration in large manufacturing in Kenya. The deployment of technology in value mapping in manufacturing firms to achieve performance. The findings in Table 2. most of the respondents agreed as supported by $M=4.208, SD=.46470$ that

large manufacturing companies uses large manufacturing firms in Kenya use radio frequency identification to facilitate inventory traceability.

From the results in Table 2, most respondents strongly agree ($M=4.6863$, $SD=0.46470$) that use radio frequency identification to facilitate inventory traceability, most of the respondents strongly agreed ($M=4.4845$, $SD=0.66610$) that RFID tags provide real time visibility into manufacturing operations to enhance value chain mapping.

Results in Table 2 respondents agreed ($M=4.4161$, $SD=.49369$) that RFID tags provides manufacturing operators with continuous data flow to improve decision making, while other respondents strongly agreed ($M=4.4876$, $SD=0.73296$) that large manufacturing firm invests in upgrading and maintaining technological infrastructure to support manufacturing operations, 22.3% agreed and 14.3% were neutral. Innovative technologies play a great role in achieve value chain mapping in manufacturing firms. From the results in Table 2, respondents agreed that large manufacturing firms actively seek out innovative technologies to improve production efficiency and product quality. Respondents strongly agreed that large manufacturing firms updates and improves its technology and systems to ensure they are the latest and most efficient as supported by $M= 4.4099$, $SD= 0.72749$.

.From the results in Table 2, most (of the respondents agreed that large manufacturing firms had adequate employees with technical skills supported by mean of 4.4286 with a standard deviation of 0 .49564 clearly indicated that large manufacturing firms deploy adequate employees with technical skills to enhance value chain mapping to achieve firm performance. Also, 4.26, majority of the respondents strongly agreed ($M=4.7702$, $SD=0.43590$) that regular training is done on employees to equip them with technical skills in large manufacturing firms . From the results, respondents agreed ($M=4.0702$, $SD=0.43590$) that Automation is a key aspect of our manufacturing processes, helping us achieve higher levels of consistency and precision, while other respondents agreed ($M=3.718$, $SD=0.792$) that they were satisfied with the effectiveness of technical capacity in large manufacturing firms in Kenya.

Table 2: Information Technology Integration and Performance of large Man. Firms

Statements.	Mean	Std. Devi
Large manufacturing firms use radio frequency identification to facilitate inventory traceability	4.2081	.87730
We use radio frequency identification to facilitate inventory traceability	4.6863	.46470
RFID tags provide real time visibility into manufacturing operations.	4.4845	.66610
RFID tags provides manufacturing operators with continuous data flow to improve decision making	4.4161	.49369
Our organization invests in upgrading and maintaining technological infrastructure to support manufacturing operations.	4.4876	.73296
We actively seek out innovative technologies to improve production efficiency and product quality.	4.2267	.59711
Our organization updates and improves its technology and systems to ensure they are the latest and most efficient	4.4099	.72749
Our organization had adequate employees with technical skills	4.4286	.49564
Regular training is done on employees to equip them with technical skills	4.7702	.43590
Am satisfied with the effectiveness of technical capacity in our organization	3.718	0.792
Automation is a key aspect of our manufacturing processes, helping us achieve higher levels of consistency and precision.	4.0702	.43590

4.4 Performance of Large Manufacturing Firms in Kenya

The study sought the extent large manufacturing firms achieve performance goals. From the results in Table 3, respondents strongly agreed ($M= 4.3882$, $SD= 0.86553$) that large manufacturing firms achieved market share through increase asset base. The results in Table 3., respondents agreed that there is increase in customer retention rate, clearly demonstrated that large manufacturing firms achieve an increase in customer retention rate. From the result in Table 3, respondents agreed that the large manufacturing companies have increased on sale revenue, clearly indicated that value chain mapping has led to increased on sale revenue in large manufacturing companies. From the results in Table 3, most of the respondents agreed ($M=3.8789$, $SD=.5430$) that large manufacturing firms have experienced increased sale volumes due to value chain mapping. The results in Table 3 show that most 40.4% of the respondent agreed ($M=3.9068$, $SD=0.96222$) that large manufacturing firms recorded increase in return on assets and return on investments. This demonstrated that enhance value chain mapping contributes to increase in return on assets in large manufacturing firms in Kenya. The results in Table 3 most , respondents agreed ($M=4.3199$, $SD=.46715$) that large manufacturing firms have improved on profitability due to value chain mapping. On the extent respondents agreed with the statement, the large manufacturing forms reported increase in operational margin profit for the study period, agreed, ($M=4.1087$,

SD=1.20124) that the large manufacturing firms reported increase in operational margin profit due to effective value chain mapping. The results in Table 3, respondents strongly agreed there is increase in number of customers as supported by a M=4.3385, SD=.67001. Further, the results in Table 3. most of the respondents agreed that the large manufacturing firms reported improvement in competitive advantage,

Table 3: Performance of Large Manufacturing Firm

Statements.	Mean	Std.Dev
Our company has expanded its market share through increase asset base	4.3882	.86553
There is increase in customer retention rate	3.9534	.48754
The sales revenue of the company has increased	4.4224	.80218
Our firm have experienced increased sale volumes	3.8789	.54300
The company recorded increase in return on assets and return on investments	3.9068	.96222
Our company has improved on its profitability	4.3199	.46715
The company reported increase in operational margin profit for the study period	4.1087	1.20124
There is increase in number of customers	4.3385	.67001
The company reported improvement in competitive advantage	4.2019	.86085

4.5 Correlation Analysis

The study used correlation analysis results to detect the strength and the direction of the predicted relationship between operation management mapping and firm performance of large manufacturing companies in Kenya. The finding in Table 4. indicated that there exists a strong, significant and positive correlation between operational value mapping and firm performance of large manufacturing companies in Kenya as indicated by correlation factor, $r=0.887$, $PV=0.003<0.01$). The result predicts a strong, significant and positive correlation between operational value mapping and firm performance of large manufacturing companies in Kenya.

Table 4: Correlation Coefficients

	Performance of Large Manufacturing Firms	
N	322	
		-.887**
Pearson Correlation		
Operations Management Mapping		
Sig.(2-tailed)	.003	
N	322	

4.6 Regression Analysis

Table 5: Model Summary For Operations Management Mapping and firm performance

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.337a	.113	.111	11.98763

a. Predictors: (Constant), Operations Management Mapping

The model summary in Table 5 indicates the R-squared is 0.810, indicating that there exists a variation between operations management inventory mapping and firm performance of large manufacturing companies in Kenya. The model summary finding indicates R² =0.113, Std Error= 11.98763, revealing that operations management mapping contributes to a significant variation at 11.3% of large performance in large manufacturing firms in Kenya.

Table 6: Analysis of Variance for Operations Management Mapping and firm performance

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	5875.347	1	5875.347	40.885	.000b
	Residual	45985.042	320	143.703		
	Total	51860.388	321			

a. Dependent Variable: Firm Performance of Large Manufacturing Companies in Kenya

b. Predictors: (Constant), Operations Management Mapping

The ANOVA was used to determine whether the model was a good fit for the data. The ANOVA results in Table 6 indicate that the F-calculated was 40.885 with a PV 0.000< 0.05. The F-calculated is greater than f-critical; this clearly demonstrated that the simple regression model $Y = \beta_0 + \beta_3 X_3 + \epsilon$ adopted by the study had significant goodness of fit as Fcal=40.885 far exceeds the FCri= 0.09 and PV=0.000<0.05. The F calculated 40.885, with PV=0.000 was far greater than F-Critical 3.8706. The condition FCal. = 40.885> FCri.= 3.8706) and PV=0.001 indicate that the null hypothesis is rejected and the alternative hypothesis is accepted that there exists a significant relationship between operations management mapping and performance of large manufacturing firms in Kenya. Therefore, the model can be used to predict the influence of operations management mapping on the performance of large manufacturing firms in Kenya.

Table 7: Regression Coefficients for Operations Management Mapping and firm performance

Mo del	Unstandardized Coefficients		Standardized Coefficients	T	Sig.
	B	Std. Error	Beta		
1 (Constant)	133.572	14.100		9.474	.000
Operations Management mapping	1.712	.268	-.337	-6.394	.000

a Dependent Variable: performance of large manufacturing firms in Kenya

The regression model was as follows:

$$Y = 133.572 + 1.7120 X3 + \epsilon$$

From the results in Table 7, operations management mapping has a significant positive influence on performance of large manufacturing firms in Kenya 1.712, p-value= 0.000<0.05). The relationship was considered significant since the p value 0.000 was less than the significant level of 0.05. The findings clearly indicated that an increase in operations management mapping would contribute to increase by 1.712 of performance of large manufacturing companies in Kenya. The condition of null hypothesis where $\beta_3 \neq 0$, PV=0.000<0.05 is rejected and the alternative hypothesis accepted. Therefore, operations management mapping has a significant and positive performance of large manufacturing companies in Kenya.

4.7 Moderated Multiple Regression Model on Value Chain Mapping and Market Share

The study tested the moderating effect of Information technological integration on the relationship between value chain mapping and the market share of large manufacturing firms in Kenya. Using the model as follows;

$$Y = \beta_0 + \beta_1 X_1 + \beta_5 Z_5 + \epsilon$$

The condition $R_{22} > R_{21}$ and the differences in R squared being 0.238 as a result of the difference between $R_{22}=0.900$ and $R_{21}=0.632$ in Table 8 indicate that the alternative hypothesis is supported. Upon introduction of IT integration in value chain mapping, there was increased in variation of market share to 90.0% from 63.2%. This suggests that information technology integration has a significant and positive moderating effect on the relationship between value chain mapping and the market share of large manufacturing firms. The beta coefficient of the interacting variable was significant, PV=0.0011<0.05, demonstrating that information technological integration significantly contributes to value chain mapping to achieve market share of large manufacturing firms in Kenya.

Table 8: Moderated Multiple Regression Model on Value Chain Mapping and Market Share

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.795a	.632	.627	.88066
2	.949a	.900	.898	.46013

Predictors: (Constant), Operations Management Mapping

Predictors: (Constant), Operations Management Mapping, Operational management mapping

*Information technology integration

b. Dependent: Performance of Large Manufacturing Companies in Kenya.

ANOVA Analysis

The ANOVA finding further revealed that at 95% confidence level, the variables produce statistically significant values and can be relied upon to explain the moderating effect of Information technology integration on the relationship between operational management mapping and Performance of Large Manufacturing Firms in Kenya.

Table 9: NOVA Analysis for Moderated Multiple Regression Model on Operational Management Mapping and Firm Performance

Model		Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	421.660	4	105.415	135.919	.000b
	Residual	245.856	317	.776		
	Total	667.516	321			
2	Regression	600.611	5	120.122	567.356	.000b
	Residual	66.904	316	.212		
	Total	667.516	321			

a. Dependent Variable: Performance Of Large Manufacturing Firms in Kenya

b. Predictors: (Constant), Operations Management Mapping

c. Predictors :(Constant), Outbound Logistics Mapping, Operations Management Mapping , Operations Management mapping *Information technology integration

The F-calculated for both model were 91.017 and 175.680 and PV = 0.000<0.05 hence there was a linear relationship between Operations Management Mapping, Operations Management Mapping, Operations Management Mapping *Information technology integration and Performance of Large Manufacturing Companies in Kenya.. In addition, the p-value was 0.000, which was less than the significance level (0.05).

Table 10: Beta Coefficients for Moderated Multiple Regression Model on Value Chain Mapping and Market Share

Coefficients a Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	
	B	Std.	Beta			
1 (Constant)	-33.561	2.604		-12.887	.000	
Operations						
Management	.604	.026	1.046	22.816	.000	
Mapping						
2 (Constant)	-58.372	1.606		-36.343	.000	
Operations						
Management	1.036	.020	1.795	51.029	.000	
Mapping						
Operations						
Management						
Mapping						
Integration	*IT	.2630	.009	1.036	29.073	.000

b. Performance of Large Manufacturing Companies in Kenya.

The study examined the moderating effect of technology integration on the relationship between operations management mapping and the market share of large manufacturing firms in Kenya. Multiple regression models were used to test whether Information technology integration had no significant moderating effect on the relationship between operations management mapping and the firm performance of large manufacturing firms in Kenya. From the results, the interaction coefficient was found to be 0.260 demonstrating that IT integration in operations management mapping contributes significantly to improvement in performance of large manufacturing firms in Kenya.

4.8 Summary of the Findings

From the correlation results the study established that exists a strong, significant and positive ($r=0.887$, $PV=0.003<0.01$).) correlation between operational value mapping and firm performance of large manufacturing companies in Kenya. From regression results, an increase in operations management mapping lead to a significant (712 , $p\text{-value}= 0.000<0.05$) influence on performance of large manufacturing firms in Kenya. This clearly indicated that operations management mapping through accuracy in manufacturing processes monitoring, combined production lines to minimise downtimes elimination of defect rate, utilization of cross-functional collaboration to save on costs .and proper storage of products, contribute significantly to performance in large manufacturing firms in Kenya. Further, redesigning of operations, perfect

order delivery, implementation of production planning, purchase order tracking in manufacturing firms, effective production scheduling, waste reduction in manufacturing processes and inventory optimization contributed to significant increase in performance in large manufacturing in Kenya.

The fifth objective of the study was to assess the moderating effect of information technology integration on the relationship between value chain mapping and performance of Large Manufacturing Firms in Kenya. The Study established that upon introduction of information technology integration in value chain mapping, $R^{22} > R^{21}$ and the differences in R squared being 0.003 as a result of the difference between $R^{22}=0.735$ and $R^{21}=0.535$ affirming that information technology integration has a significant and positive moderating effect on the relationship between value chain mapping and the performance of large manufacturing firms. This demonstrated that information technological integration in value chain mapping significantly enhances the performance of large manufacturing firms in Kenya. The results demonstrated that IT integration in value chain mapping through utilization of radio frequency identification to facilitate inventory traceability, use of RFID tags provide real time visibility into large manufacturing firms operations, upgrading and maintaining technological infrastructure to support manufacturing operations, deployment of innovative technologies, updating and improves its technology and systems, automation is a key aspect of large manufacturing processes enhance value chain mapping fostering performance in large manufacturing firms in Kenya

5.0 Conclusions

From the findings, the study concluded that exists a strong, significant and positive correlation between operational value mapping and firm performance of large manufacturing companies in Kenya and that increase in operations management mapping lead to a significant influence on performance of large manufacturing firms in Kenya. This clearly indicated that operations management mapping through accuracy in manufacturing processes monitoring, combined production lines to minimise downtimes elimination of defect rate, utilization of cross-functional collaboration to save on costs and proper storage of products, contribute significantly to performance in large manufacturing firms in Kenya. Further, redesigning of operations, perfect order delivery, implementation of production planning, purchase order tracking in manufacturing firms, effective production scheduling, waste reduction in manufacturing processes and inventory optimization contributed to significant increase in performance in large manufacturing in Kenya.

From the results, the study concluded that information technology integration has a significant moderating in relationship between value chain mapping and performance of Large Manufacturing Firms in Kenya as upon introduction of information technology integration in value chain mapping, there was improvement in performance of large manufacturing firms. This demonstrated that information technological integration in value chain mapping significantly enhances the performance of large manufacturing firms in Kenya. IT integration in value chain mapping through utilization of radio frequency identification to facilitate inventory traceability, use of RFID tags

provide real time visibility into large manufacturing firms operations, upgrading and maintaining technological infrastructure to support manufacturing operations, deployment of innovative technologies, updating and improves its technology and systems, automation is a key aspect of large manufacturing processes enhance value chain mapping fostering performance in large manufacturing firms in Kenya

From the conclusion, the study recommend that firms in manufacturing sector in Kenya should sought measures to enhance operational value mapping to achieve firm performance of large manufacturing companies in Kenya and that increase in operations management mapping lead to a significant influence on performance of large manufacturing firms in Kenya. Manufacturing's firms should devised measures to enhance operations management mapping through accuracy in manufacturing processes monitoring, combined production lines to minimise downtimes elimination of defection rate, utilization of cross-functional collaboration to save on costs .and proper storage of products, contribute significantly to performance in large manufacturing firms in Kenya. Further, redesigning of operations, perfect order delivery, implementation of production planning, purchase order tracking in manufacturing firms, effective production scheduling, waste reduction in manufacturing processes and inventory optimization contributed to significant increase in performance in large manufacturing in Kenya.

REFERENCE

Abade, A. Noor I. S., PNamusonge E., Wachiuri E. (2024). Value Chain Mapping On Performance Of Food And Beverage Manufacturing Firms In Kenya. *International Journal of Social Sciences Management and Entrepreneurship* 8(1): 329-347, 2024

Ahmad, I & Siddiqui, M. (2021). Value chain mapping for enhancing the operational performance of businesses in developing economies. *Global Business Review*, 22(3), 617-631.

Al-Debei, M. M & Al-Lozi, E. M. (2020). The impact of value chain analysis on the performance of manufacturing companies in Jordan. *Journal of Manufacturing Technology Management*, 31(3), 484-502.

Bell, L., Flynn, A., & O'Hare, P. (2020). From cartonera publishing practices to trans-formal methods for qualitative research. *Qualitative Research*, 1468794120914516.

Blackstone J.H. (2020). Theory of constraints – A status report. *International Journal of Production Research*, 39(6), 1053-1080.

Chia, S. L & Tan, C. H. (2022). The impact of value chain mapping on business performance in the renewable energy sector. *Renewable and Sustainable Energy Reviews*, 157, 112038.

Demircioğlu E.N., Demircioğlu M. and Küçüksavaş N. (2022). *The Relationship of The Theory of Constraints with Other Accounting and Management Techniques*. *Journal of Çukurova University, 14(1)*, 42-55. *Health Serv Res 10, 7* (2019).

Dey, P. K & Bhattacharya, A. (2020). Value chain mapping in the service industry: A case study approach to improving performance. *Journal of Service Research, 23(1)*, 44-57.

Gutiérrez-Broncano, S, Linuesa-Langre, o J, Rubio-Andrés, M, Sastre-Castillo, M.Á. (2024), "Can hybrid strategy improve SME performance? The role of innovation and adaptive capacity". *European Journal of Innovation Management, 27. 9* . 173–197.

Jafari, Y., & Aliakbari, M. (2020). Value chain analysis in improving organizational performance: The case of automotive industry. *International Journal of Automotive Technology and Management, 20(1)*, 51-68.

Johnson, P & Weng, Y. (2022). Value chain mapping: A tool for enhancing firm performance in manufacturing and service sectors. *Industrial Management & Data Systems, 122(4)*, 769-791.

Kumar, N & Sharma, S. (2020). Enhancing organizational performance through value chain mapping and optimization. *Journal of Supply Chain Management, 56(2)*, 111-130.

Kurniawati, D & Susanto, H. (2021). An analysis of the impact of value chain mapping on the performance of SMEs in the food and beverage sector in Indonesia. *Journal of Small Business Management, 59(4)*, 665-686.

Mahmood, M & Baki, M. A. (2020). Value chain mapping as a strategic tool for operational performance: A case study of manufacturing SMEs. *International Journal of Operations & Production Management, 40(6)*, 755-779.

Mikkelsen, J.& Karpavice, J. & Tambo, T. (2022). Optimization of Packaging Processes for Special Orders Using Process Activity Mapping. 10.1007/978-3-030-90532-3_1.

Muhamad Y., & Lukmandono (2021). Implementation of Quality Filter Mapping (QFM) in Hot Press Using Lean Manufacturing To Eliminate Waste. *Procedia of Engineering and Life Science, 1(2)*, 1-7

Muhammad, A. K., Shakeel, A. S., Tahir, H.L. & Usama, K.M..(2020). Potential of Lean Tool of Value Stream Mapping (VSM) in Manufacturing Industries , *Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management Harare, Zimbabwe, 7-10,,*

Naas ,A.and Berass D. (2025). Optimization of the Value Chain through Management Control: Case Study of a Public Enterprise. *Economics and Finance, 13, 1*, 1-10

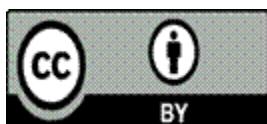
Nyongesa,A.& Chege,D. (2020). Effect of Waiting time planning On Supply Chain Performance in food and beverage processing companies in Kenya. *International Journal of Recent Research in Commerce Economics and Management (IJRRCEM)*. 7,4: (77-85)

Okumu, E. A., & Bett, S. (2022). Inventory Management Practices and Organization Performance of Steel Industries in Nairobi County, Kenya. *International Journal of Current Aspects*, 3(3), 71-82.

Pude, G. & Naik, G.& Naik, P.(2023). Application of Value Stream Mapping Tools For Process Improvement a Case Study in Foundry. 7-12.

Sadikin, M.(2023). Defect Reduction in the Manufacturing Industry: Systematic Literature Review. *International Journal of Industrial Engineering and Engineering Management*. 5. 73-83. 10.24002/ijieem.v5i2.7495.

Salwin, M.; Pszczołkowska, K.; Pał, ega, M.; Kraslawski, A.(2023). Value-Stream Mapping as a Tool to Improve Production and Energy Consumption: A Case Study of a Manufacturer of Industrial Hand Tools. *Energies* ., 16, 7292. <https://doi.org/10.3390/en16217292>


Sautma R.B. (2024). The influence of information technology integration on firm performance through supply chain quality and supply chain resilience. *Decision Science Letters* .14 . 225–238

Soni, G & Purohit, R. (2020). Value chain mapping for performance improvement in the healthcare sector. *Journal of Healthcare Management*, 65(2), 134-149.

Sudarmi, E. & Sunaryo, W.. (2024). Enhancing Inventory Accuracy and Operational Performance with ERP. *Sinergi International Journal of Logistics*. 2. 1-14. 10.61194/sijl.v2i2.622.

Teixeira, J. S & Pereira, L. C. (2021). The influence of value chain mapping on organizational performance: Evidence from the textile industry. *Journal of Business Research*, 128, 210-220.

Touzett-Cabellos,A.C., Uene-Tengan, K.C. and Collao-Díaz, F.M. (2024). Enhancing Competitiveness in the Peruvian Textile Industry through Lean Manufacturing: A Case Study on Reducing Defects and Improving Efficiency. 7th European Conference on Industrial Engineering and Operations Management Augsburg, Germany, July 16-18

©2026 by the Authors. This Article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>)