

Journal of

Environment

(JE)

**Solar Photovoltaic Technologies for Sustainable Energy Generation:
Recent Advances and Future Trends**

**CARI
Journals**

Solar Photovoltaic Technologies for Sustainable Energy Generation: Recent Advances and Future Trends

 Abdullah Aldulli
Mechanical Engineering, University of Sharjah, Saudi Arabia
abdullah.aldulli@gmail.com
<https://orcid.org/0009-0004-8943-6835>

Accepted: 12th Jan, 2026, Received in Revised Form: 30th Jan, 2026, Published: 10th Feb, 2026

Abstract

Purpose: Solar photovoltaic technologies have emerged as a cornerstone of sustainable energy generation, driven by the urgent need to reduce greenhouse gas emissions, enhance energy security, and support long-term economic development. This study aims to provide a comprehensive review of recent advances in solar photovoltaic technologies and evaluate their role in supporting sustainable energy systems, particularly in large-scale and commercial applications.

Methodology: The study adopts a structured literature review approach, synthesizing recent research on photovoltaic materials, cell architectures, module design, and system-level innovations. A life cycle assessment perspective is incorporated to examine environmental performance indicators such as energy payback time, carbon footprint, and resource utilization, alongside analysis of system integration and energy management developments.

Findings: The review shows that advancements in crystalline silicon technologies, thin-film photovoltaics, and emerging high-efficiency concepts have significantly improved conversion efficiency, reliability, and cost competitiveness. System-level innovations, including power electronics, digital monitoring, energy storage integration, and smart energy management, are enhancing the scalability and sustainability performance of solar photovoltaic systems in commercial and large-scale applications.

Unique Contribution to Theory, Policy and Practice: This article integrates technological, environmental, and system-level perspectives into a unified sustainability framework for solar photovoltaic deployment. It provides practical insights for engineers, policymakers, and real estate developers on integrating solar energy into commercial infrastructure while advancing research directions in high-efficiency materials, **system scalability, and policy-supported market adoption.**

Keywords: *Solar photovoltaic technology, Sustainable energy generation, Renewable energy systems, Photovoltaic efficiency, Environmental sustainability, Future energy trends*

1. Introduction

The global energy system is undergoing a rapid transformation driven by a combination of climate change, resource depletion pressures, population growth, and increasing energy demand. Global electricity generation has been dominated for decades by fossil fuel-based systems. However, the continued use of these systems is associated with significant greenhouse gas emissions and environmental degradation (Razykov et al., 2011) There is growing international commitment to mitigate climate change through low-carbon and renewable energy sources, particularly through frameworks such as the Paris Agreement and national decarbonization strategies (Green et al., 2021) Therefore, the transition to low-carbon energy systems has become an urgent global priority. In addition to being a technological challenge, the transition to low-carbon energy systems is a socio-economic and environmental imperative that requires scalable, reliable, and sustainable solutions (Lampropoulos et al., 2020).

In addition to the need to address the challenges of transitioning to low-carbon energy systems, there is growing recognition of the importance of balancing economic growth with environmental protection and social well-being in achieving sustainable energy systems (Luo et al., 2025) Sustainability in energy systems requires affordable and secure power while minimizing carbon emissions, reducing air pollution, and conserving natural resources. Renewable energy technologies provide pathways for decoupling economic development from environmental harm (Pse, 2022) Among the available renewable options, solar energy stands out due to its availability, modular nature, and compatibility with diverse applications ranging from small-scale residential systems to large commercial and utility-scale installations. The global adoption of solar energy systems is further accelerated by the continuous decline in technology costs and the maturation of manufacturing processes (Peng et al., 2013).

Solar photovoltaic technologies play a strategic role in this transition by directly converting solar radiation into electricity without combustion or direct emissions. This characteristic positions photovoltaic systems as key contributors to low-carbon energy systems and long-term climate mitigation strategies (Kibert, 2016) Over the past two decades, advancements in materials science, cell design, and system engineering have led to significant improvements in photovoltaic efficiency, durability, and performance reliability. These developments have transformed solar photovoltaics from a niche technology into one of the fastest-growing sources of electricity worldwide. As a result, solar photovoltaics are increasingly integrated into national energy portfolios and long-term sustainability plans.

In addition to supporting emission reduction, solar photovoltaic technologies contribute to broader sustainability goals by enhancing energy security and system resilience. The distributed nature of photovoltaic systems enables decentralized electricity generation, reduces dependence on centralized fossil fuel infrastructure, and mitigates risks associated with fuel price volatility and supply disruptions. This flexibility is particularly valuable in rapidly urbanizing regions and in

large commercial developments, where on-site solar generation can contribute to demand management and operational efficiency (Razykov et al., 2011) Additionally, the compatibility of photovoltaic systems with energy storage technologies and smart grid frameworks strengthens their role within modern, adaptive energy systems. In the context of low-carbon energy systems, solar photovoltaic technologies are not merely an alternative power source but a foundational component of future sustainable infrastructure. Their ability to integrate with buildings, urban developments, and large-scale energy networks positions them at the intersection of engineering innovation, environmental stewardship, and economic transformation. Understanding recent technological advances and emerging trends in solar photovoltaics is essential for advancing sustainable energy generation and achieving long-term global decarbonization objectives.

2. Overview of Solar Photovoltaic Technologies

Photovoltaic solar energy has been developed using the conversion of solar radiation directly into electrical energy through solid state physical processes. The conversion of solar radiation to electrical energy is achieved by the photovoltaic effect. The photovoltaic effect is the process by which the incident photons of light on a semiconductor material give energy to the electrons to enable them to cross the band gap of the semiconductor and produce an electric current. The creation of electron-hole pairs when sunlight hits a photovoltaic cell in a semiconductor p-n junction results in an electric field that causes the charge carriers to move in opposite directions; creating a direct current (DC) flow of electricity that may be collected from the outside circuit. Because photovoltaic systems do not use mechanical action, fuel combustion, or direct emissions, they are naturally suitable for low-carbon and sustainable energy production.

The selection of the semiconductor material and the solar cell architecture are the primary aspects that determine the solar photovoltaic performance (Yang et al., 2023) The performance of the semiconductor material and the solar cell architecture will result in the determination of several key performance characteristics, including conversion efficiency, temperature sensitivity, degradation rate and operational lifespan. As technology advances, photovoltaic technologies have evolved into numerous different types, each with its own advantages and disadvantages that are relevant to the suitability of the type of application, including residential rooftop, commercial building, and large-scale development.

2.1 Crystalline Silicon Photovoltaic Technologies

Crystalline silicon photovoltaics is the most mature and widely used form of solar technology. There are two main forms of crystalline silicon photovoltaics, monocrystalline and polycrystalline silicon cells (Amir & Khan, 2022) Monocrystalline silicon cells are made from one single continuous crystal structure allowing for greater electron mobility and better conversion efficiency. Monocrystalline silicon cells perform well with limited roof space availability, making them ideal for commercial buildings and large malls where optimizing roof space is critical. Although polycrystalline silicon cells are made from numerous silicon crystals, they are relatively

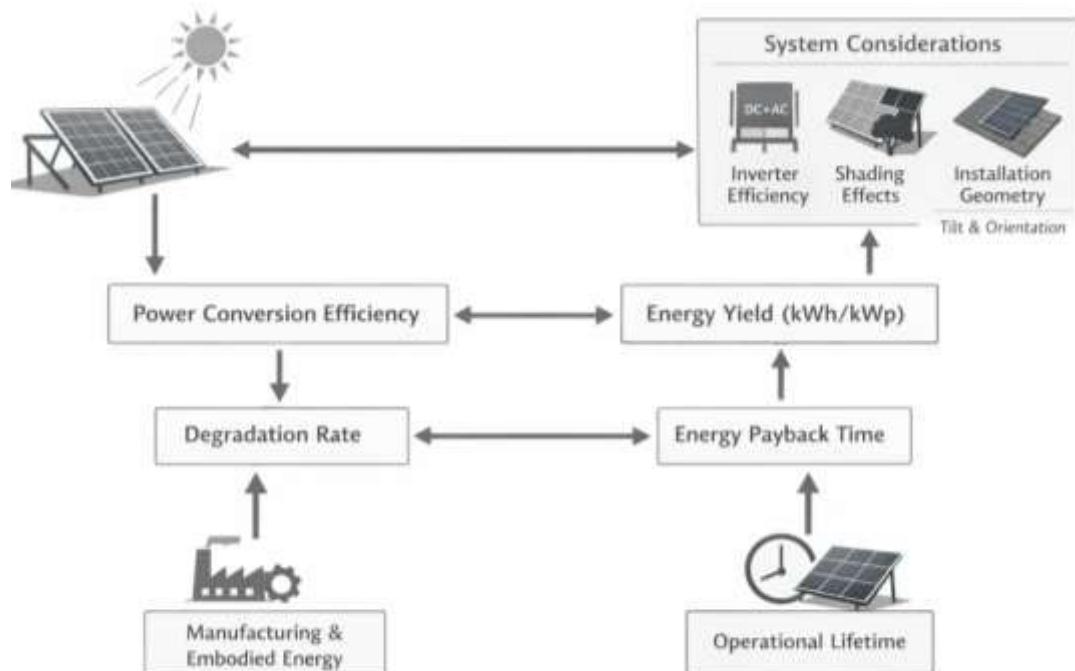
inexpensive to manufacture compared to monocrystalline silicon cells, however, they tend to have slightly lower conversion efficiency due to increased grain boundary loss.

Crystalline silicon modules are known for having very long operational lifetimes, exceeding 25 years, and are very stable under various environmental conditions. However, crystalline silicon modules tend to have reduced output efficiency at high operating temperatures. Therefore, the design of the system must take into consideration the environmental condition, specifically temperature, as it relates to ventilation, mounting, and heat dissipation.

2.2 Thin-Film Photovoltaic Technologies

Thin film photovoltaic technologies represent another major category of photovoltaic technologies and are defined as the deposition of extremely thin semiconductor layers on a substrate (glass, metal, or flexible polymer). Typical thin-film materials include amorphous silicon, cadmium telluride, and copper-indium-gallium-selenide. Generally, thin film photovoltaics are advantageous in that they require much less raw materials and energy for their manufacture, thus reducing the embodied energy and potentially improving the environmental performance.

Although thin film photovoltaics generally exhibit lower conversion efficiencies compared to crystalline silicon systems, they provide several advantages in terms of flexibility, low weight, and better performance under diffuse light and high temperature conditions (Canton, 2021). These characteristics make thin film modules advantageous for building-integrated photovoltaic applications, facade installations, and large areas where weight and aesthetic integration are considered to be critical parameters. Thin film systems can provide design flexibility while providing significant contributions to the on-site renewable energy generation for commercial developments.


2.3 Emerging and Advanced Photovoltaic Materials

In addition to existing technologies, researchers have focused on developing new photovoltaic materials that will enhance efficiency and reduce costs. Such emerging materials include perovskite solar cells, tandem cell architectures, and organic photovoltaic systems. Tandem configurations, which are designed to place multiple semiconductor layers with complementary band gaps on top of each other, have resulted in substantial increases in efficiency through capturing a wider range of solar radiation. Many of the above mentioned technologies are currently still in the research or early stages of commercialization and therefore represent promising avenues for future high-performance and sustainable solar energy systems.

2.4 Performance Characteristics and System Considerations

Performance of solar photovoltaic systems is determined by both the module level and system level characteristics (Fthenakis & Kim, 2011). Module level performance characteristics include power conversion efficiency, temperature sensitivity, degradation rate, and energy yield over the system's lifetime. Actual performance is significantly influenced by environmental conditions

including solar irradiance, ambient temperature, shading, and installation orientation. Additionally, system components including inverters and mounting configurations affect conversion efficiency and operational reliability. In regards to sustainability, energy payback time and long term life cycle performance are essential for evaluating the feasibility of photovoltaic systems, particularly for large commercial and building integrated applications where durability, efficiency and environmental benefit must be maximized.

Figure 1. Performance Characteristics and System Level Considerations of Solar Photovoltaic Systems

This figure illustrates the interrelationship between power conversion efficiency, energy yield, degradation rate, and energy payback time, highlighting the influence of system considerations such as inverter efficiency, shading effects, installation geometry, manufacturing embodied energy, and operational lifetime. It aligns directly with Section 2.4 by showing how both technical performance and system design jointly determine the long-term sustainability and effectiveness of solar photovoltaic systems.

3. Recent Technological Advances in Solar Photovoltaics

Recent technological advancements in the field of solar photovoltaics (PV) have impacted the PV industry at all stages along the PV supply chain. These advancements include PV cell technology improvements; PV module design enhancements; and PV system enhancements. These advancements have resulted in increased energy conversion efficiency, reliability, and suitability

for large scale and building integrated applications. Solar Photovoltaics (PV), as a result of these advancements, is considered a mature, commercially viable option for generating sustainable energy.

3.1 Cell Level Advancements in High Efficiency PV Technology and Materials

Cell level innovation in semiconductor materials and device architecture has significantly improved the efficiency of solar cells. Improved crystalline silicon (c-si) technologies such as passivated emitter and rear contact (PERC) c-si solar cells and heterojunction c-si solar cells have decreased recombination loss and improved the collection of charge carriers. Both of these technologies allow for a larger amount of electrical power to be produced per unit area of a solar panel (Razykov et al., 2011) This is especially beneficial for commercial buildings and large developments, because available roof or wall space is limited and every square foot of available surface area must be used to produce as much electrical power as possible.

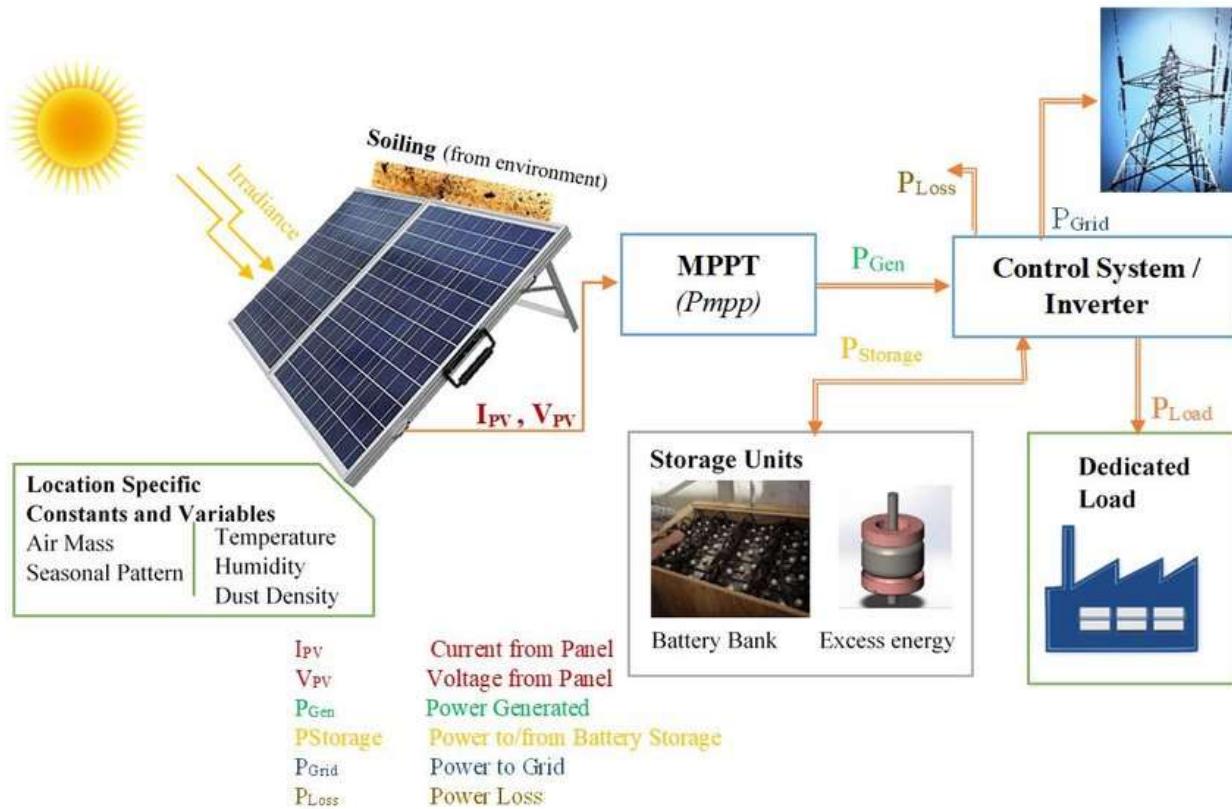
Emerging materials, such as perovskite semiconductors and tandem cell configurations, have shown great potential to surpass the efficiency limits of single junction c-si solar cells. Tandem solar cells use different materials that have complimentary bandgaps to capture a broader portion of the solar spectrum. Although many of these new technologies are still being developed for mass commercialization, they represent a key path for the development of future high performance solar photovoltaic systems.

3.2 Enhancements in PV Module Design and Manufacturing

At the module level, design improvements have focused on creating more durable modules that will lose less energy due to degradation, improve module adaptability to various installation site environments, and create modules that can be installed in a variety of orientations. Bifacial modules allow for electricity generation from both sides of the module (front and back), increasing overall energy production when mounted on reflective surfaces or raised mounting structures. Improved encapsulant materials and glass coatings provide additional protection against water, UV light and physical damage, extending operational life.

Manufacturing innovations have also been responsible for reducing costs and improving the sustainability of solar modules. Increased automation, improved material usage, and better quality control have all resulted in fewer defects in each module and lower embodied energy. These innovations will be particularly important for large commercial projects where consistent performance and low maintenance are critical to success.

3.3 Power Electronics and Optimizing PV Systems


Advances in the system-wide application of PV technology have had the most significant impact on actual performance of PV systems in the real world. Modern inverters are capable of converting a greater percentage of the DC current generated by the PV array into AC current, achieving better grid compatibility, and detecting faults in the PV system. The introduction of module level power

electronics (MLPEs) (such as optimizers and micro-inverters) helps mitigate the negative effects of shade and mismatched modules that occur when there are multiple modules connected together in series and/or parallel in an array. MLPEs help ensure that energy lost in one part of the PV array does not negatively affect other parts of the array (Hernandez et al., 2014).

Digital monitoring and control technologies provide even greater opportunities for optimizing system performance by providing the ability to collect data in real time, diagnose faults, and schedule preventative maintenance. With this capability, owners/operators of PV systems can maximize their energy output, minimize downtime, and optimize system operation during the entire life cycle of the PV system. Additionally, when paired with energy storage systems and smart grid connections, PV systems can play a pro-active role in supporting demand response and grid stability.

3.4 Implications for Large Scale and Building Integrated PV Systems

The combination of these technological advancements has significantly expanded the applications of solar photovoltaics in large scale and building integrated applications. High efficiency cells and optimized PV module designs enable more power to be produced per unit area of a PV system. Intelligent PV system design enables the PV system to operate reliably regardless of environmental conditions or loads placed upon it. As a whole, the advancement of these technologies supports the widespread adoption of solar photovoltaics as a fundamental component of sustainable commercial developments and modern energy systems (Pse, 2022).

Figure 2. Block Diagram of Technological Innovations in Solar Photovoltaics from Cell to System Level

This figure illustrates the hierarchical progression of recent technological advances in solar photovoltaics, showing how innovations at the solar cell level translate into improved module design and are further enhanced through system-level technologies such as power electronics, digital monitoring, and grid integration. It directly matches the content of Section 3 by emphasizing the integrated pathway from materials and cell innovation to large-scale and building-integrated photovoltaic applications.

4. Sustainability and Environmental Performance of Solar PV Systems

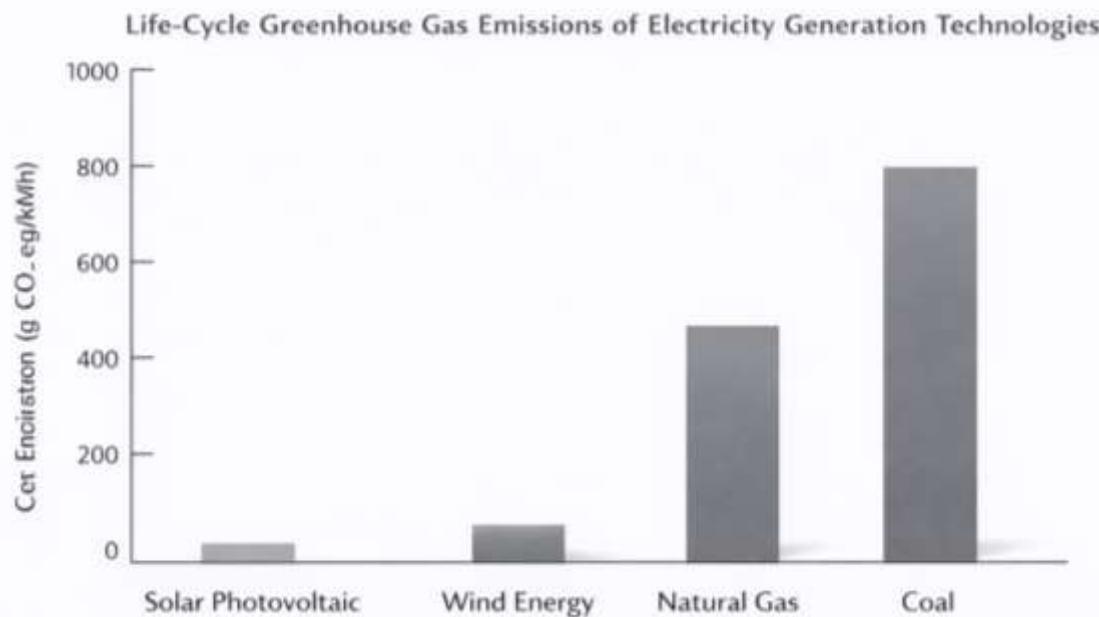
The environmental and sustainability characteristics of solar photovoltaic (PV) systems will be significant to their role in reducing carbon in low-carbon transition energy systems (Bianco et al., 2019). When comparing to traditional fossil fuels based electric power generation, solar PV systems do not directly emit greenhouse gases while producing electricity. A complete evaluation of the sustainability of solar PV systems will require an examination of the entire life cycle of the technology; including extraction of raw materials, manufacturing, transportation, installation, operation, and end-of-life management of the solar PV technology. Therefore, life cycle

assessments have been developed to evaluate the overall environmental impact of solar PV technologies.

4.1 Life Cycle Assessments of Solar Photovoltaic Systems

Life cycle assessment studies have shown that the largest portion of the environmental impacts associated with photovoltaic systems occur in the manufacturing phase of the system (Al Shammre, 2024) During this phase, energy intensive processes are utilized to purify silicon, create cell structures, and construct modules. Improvements in manufacturing efficiency, the increasing use of renewable forms of electricity in the manufacturing process, and improvements in the recovery and reuse of materials have all contributed to reducing the environmental impacts of solar PV systems over the years. In comparison to fossil fuel-based power generation, solar PV systems have substantially lower life cycle emissions, furthering their ability to contribute to long term decarbonization efforts.

4.2 Energy Payback Time and Resource Use Efficiency


In addition to energy production, one of the key indicators of the sustainability of solar PV systems is energy payback time (EPBT). EPBT is defined as the time it takes for a solar PV system to produce the same amount of energy that was used to manufacture and install the system. Typical modern solar PV systems achieve EPBT in just a few years, and then provide net positive energy output for the rest of their operating life. The net positive energy balance provided by solar PV systems is particularly valuable for large commercial installations, as these systems can operate for many years with very high utilization rates, resulting in a more environmentally beneficial use of resources (Kibert, 2016).

Solar PV systems have also improved in terms of resource use efficiency through thinning of materials, increases in module efficiencies, and increases in the recyclability of the modules. These advancements decrease the demand for materials to produce electricity from each unit of solar PV system, and subsequently, the pressure on these limited resources to support sustainable development at scale.

4.3 Climate Change Impacts and Environmental Consequences of Solar PV Systems

From a climate change perspective, solar PV systems generally exhibit low greenhouse gas emissions per unit of electricity produced when considered over their entire life cycle. The emission intensity of solar PV systems is generally several orders of magnitude less than that of coal or gas fired power plants, regardless of whether or not the impacts of the manufacturing stage are taken into account. Additionally, solar PV systems can benefit the environment by reducing local air pollution and decreasing water consumption during operations, and by reducing the disturbance to natural ecosystems as opposed to other forms of centralized fossil fuel-based infrastructure.

However, the environmental implications of solar PV systems cannot be ignored, particularly land use, waste management and the end of life recycling requirements for large-scale and building integrated applications of the technology. Therefore, designing solar PV systems in a manner that is sustainable, responsibly sourcing the components of the systems, and utilizing circular economy principles to maximize the environmental benefits of the systems are all essential.

Figure 3. Comparative Life-Cycle Environmental Performance of Electricity Generation Technologies

This bar chart compares life cycle greenhouse gas emissions and energy payback characteristics of solar photovoltaic systems with conventional electricity generation technologies. The figure highlights the substantially lower carbon footprint and favorable energy payback time of solar PV, demonstrating its environmental advantages and reinforcing its role as a sustainable energy solution.

5. Integration of Solar PV into Sustainable Energy Systems

The effective incorporation of solar photovoltaic systems into renewable energy systems will allow for a maximum contribution to the production of low-carbon electricity and ensure the reliability and robustness of the electrical power supply. As the installation of solar PV expands into urban and commercial areas, the issues and possibilities of integration expand from those of individual unit performance to include the operation of solar PV systems on the grid; energy storage; intelligent control; and application-specific design. An examination of all of these aspects will provide a means for solar PV to be used as an energy supplement rather than as a separate part of modern energy infrastructure.

5.1 Grid Integration of Solar Photovoltaic Systems

The integration of solar photovoltaic systems into the electric grid has been identified as one of the most important technical hurdles in the widespread adoption of solar photovoltaics. Unlike traditional electric generating stations, which produce electric power at a constant rate, photovoltaic systems generate electric power at a variable rate based upon the amount of solar radiation received (Razykov et al., 2011) Therefore, solar photovoltaic systems represent a unique challenge to grid stability due to their inability to regulate voltage and frequency; as well as maintain acceptable power quality (Bianco et al., 2019) Furthermore, when the percentage of total grid power supplied by solar photovoltaic systems exceeds a certain threshold (typically defined as the "high penetration" point), the distribution network becomes unstable and unreliable. Recent advancements in inverter technology have enabled the use of solar photovoltaic inverters for controlling the reactive power flow on the grid; providing voltage support; and allowing the inverter to continue supplying power to the grid even after a fault occurs (i.e., fault ride through capability). These capabilities enable solar photovoltaic systems to act as active participants in maintaining the stability of the grid; whereas they would otherwise be considered as passive generators (Luo et al., 2025).

Effective grid integration at the planning stage requires coordinated network designs; accurate forecasting of solar energy production; and adaptive operational strategies. With proper management, solar photovoltaic systems can reduce peak demands on the existing centralized infrastructure; delay grid upgrades; and improve overall system resilience.

5.2 Role of Energy Storage in Solar PV Integration

Energy storage devices are becoming increasingly important to resolve the temporal mismatch between the production of solar energy and the demand for electricity. Energy storage devices store surplus solar-generated electricity during times of high irradiation and release this stored electricity during times of low irradiation or during periods of high demand. Energy storage devices therefore increase the reliability and flexibility of solar PV systems. Increasingly, battery-based energy storage systems are being installed in conjunction with photovoltaic systems to support load-shifting; peak-shaving; and backup power generation (Peng et al., 2013).

Commercial and urban applications of energy storage enable greater self-consumption of solar-generated electricity; thus reducing reliance on the grid and increasing economic performance. Additionally, energy storage provides the ability to support grid services such as frequency regulation and demand response; thereby increasing the role of solar PV systems in sustainable energy systems.

5.3 Smart Grids and Digital Energy Management

Smart Grids and Digital Energy Management are two key elements of the integration of solar PV systems into sustainable energy systems. Smart Grids utilize advanced sensors; communications

systems; and control systems to manage distributed energy sources in real-time. Data-driven monitoring; along with automated control, enables smart grids to dynamically balance supply and demand; optimize the coordination of photovoltaic generation; and optimize the interaction with energy storage and other flexible loads. Digital Energy Management Systems are particularly useful in complex systems such as large commercial buildings and multi-use urban developments. Digital Energy Management Systems provide users with real-time information about energy flows; predict energy demand; and enable users to apply adaptive control measures to maximize the utilization of solar generated energy; while maintaining operational reliability.

5.4 Application in Large Commercial Buildings and Urban Development

The integration of solar PV systems into large commercial buildings and urban development's presents a viable pathway to the implementation of sustainable and low-carbon energy infrastructure. For example, in shopping centers and similar large facilities, roof-top and facade mounted solar PV systems can contribute to a substantial portion of the electricity required to meet on-site demand for lighting; ventilation; and heating/cooling. Combining solar PV systems with energy efficiency in the building design; and with Intelligent Energy Management Systems, contributes to lower operating costs; and better environmental performance (Rahman et al., 2012).

When applied at the urban scale, the integration of solar PV systems into buildings; public spaces; and distributed energy networks contributes to the development of decentralized generation; enhances energy security; and supports long-term sustainability goals by reducing greenhouse gas emissions; promoting the development of resilient urban energy systems; and facilitating the transition towards smart and sustainable cities.

6. Future Trends, Challenges, and Research Directions

While solar PV will continue to grow globally as a low-carbon source of electricity; future growth will be driven by advancements in the next generation of materials and systems (such as system intelligence), improved sustainability outcomes throughout the life cycle of the equipment and the ability to accommodate high amounts of variable generation in existing energy systems. Therefore, the next set of emerging trends and areas of research will cover a wide variety of topics ranging from the architecture and manufacturing of the cells themselves, to how they operate in the grid, what forms the markets should take, and how we manage the equipment when it reaches the end of its useful life.

6.1 Next Generation High Efficiency Solar Cells

The first major technological advancement is in the development of next-generation high-efficiency solar cell architectures. Tandem solar cell structures that combine absorbers with different band gaps represent some of the most promising ways to achieve efficiencies greater than those that have been achieved with single junction solar cells. Perovskite based tandem solar cells, silicon based tandem solar cells, and other types of multi-junction solar cells could potentially

allow for higher power density, making them more attractive for applications where surface area is limited (such as rooftops and facade surfaces of large commercial buildings). There are many areas where innovation is expected at the module level, including advanced encapsulations, anti-reflective coatings and anti-soiling coatings, and designs that improve thermal performance and reliability in extreme weather conditions (Kibert, 2016).

At the same time, there is an ongoing innovation effort in Building Integrated Photovoltaics (BIPV) or BIPV, where PV components are designed to function as building components (such as facade claddings, shading devices, skylights, and roofing systems) (Al Garni et al., 2016) This is especially true for large commercial projects (such as shopping malls), where design integration, durability, and aesthetics can greatly affect the decision to adopt a BIPV solution. In addition to these two main areas of innovation, another emerging area is PV systems that are designed to provide increased circularity (including modules designed to be easily disassembled and recyclable, thus increasing long-term sustainability and meeting increasingly stringent environmental regulations).

6.2 Grid Integration and Supply Chain Challenges

Although solar PV is growing rapidly, there are still significant scalability challenges that are being faced by the industry. One challenge is associated with grid integration at high penetration levels of solar PV, where the variability created by the solar PV can add complexity to the operation of the electric distribution system. As solar PV penetrations increase, electric systems must include better forecasting, more flexible generation, energy storage, and demand side management capabilities to ensure the reliability and stability of the electric system. Another challenge facing the solar PV industry is supply chain resiliency, including both the availability of critical materials and manufacturing capacity. Future growth may be impacted by the availability of resources, manufacturing localization strategies, and global trade issues.

Additionally, environmental scalability of utility-scale PV deployment will need to consider the impacts of the deployment on land use, wildlife habitats, and visual impacts. Additionally, even in urban areas, rooftop and facade installations will need to consider structural limitations, shading, dust accumulation, and high temperatures that can decrease the energy output of the installation. For larger commercial buildings (especially in hot and dusty environments), reliable and effective maintenance strategies will be needed to maximize the long-term performance of the PV installation.

6.3 Policy and Market Drivers Shaping Adoption

The deployment of Solar PV technology has been influenced greatly by policy and market conditions. There have been several policy drivers such as Renewable Portfolio Standards (RPS), Incentives for Distributed Generation (DG) - or what can be called community-based projects; Net Metering Rules (NMR); Procurement Mechanisms (PM) for Utility Scale Projects (USP); and

Regulations supporting Low-Carbon Building Design & Energy Efficiency (LCBDE). Additionally, there have been significant market drivers contributing to the growth of solar PV including decreasing technology costs; Corporate Sustainability Commitments (CSCs); and an increase in Interest in On-Site Generation (IOSG) to minimize Operational Expenses (OpEx) and maximize Energy Security (ES) (Wall et al., 2012) (Formolli et al., 2021).

Adoption of solar PV technologies among commercial developers are typically influenced by Financing Models (FM), Power Purchase Agreements (PPA) - or how developers finance their projects; and Building Energy Codes (BEC) that enable the use of renewable energies.

In terms of future policy direction, it is anticipated that an increasingly larger amount of emphasis will be placed upon System Performance Verification (SPV), Sustainability Reporting (SR), and Responsible End-of-Life Management (REOM), all of which will continue to drive Lifecycle-Focused Design and Operation (LFDO) of solar PV systems.

6.4 Future Research Directions for Sustainable and High-Performance PV

Research into sustainable and high-performance photovoltaic (PV) systems should incorporate both technological performance and sustainability outcomes. The priority areas for research to achieve these goals include: Improving Long-Term Reliability of PV Modules in Extreme Climates; Reducing Degradation Mechanisms; and, Enhancing Thermal Management to Sustain Output Under High Temperatures (Peng et al., 2013).

Research into the sustainability of PV manufacturing should focus on reducing Embodied Energy; Increasing Use of Recycled Materials; and Minimizing Hazardous Substances.

End-of-Life Solutions and Recycling Pathways represent another important area of research because of the anticipated large-scale deployment of PV technology over the next few decades, which will lead to increasing volumes of retired modules.

At the Systems Level, research should focus on Optimized Integration of PV with Energy Storage, Smart Grid Control and Demand Response to allow PV to make contributions to Grid Stability and Resilience.

Advanced Digital Monitoring, Predictive Maintenance and Data-Driven Performance Modeling will also play a growing role in Maximizing Operational Efficiency and Reducing Lifecycle Costs. These Directions will ultimately determine the ability of Solar PV to Deliver Not Only Greater Electricity Generation, But Also Improved Sustainability, Reliability and Economic Value in Future Energy Systems.

Conclusion

Solar photovoltaic technologies have become a central component of sustainable energy generation, providing a practical pathway toward low-carbon, resilient, and economically competitive energy systems. Recent advances across the photovoltaic value chain, including improvements in cell efficiency, module design, and system-level integration, have enhanced the performance, reliability, and scalability of solar PV deployment in commercial, large-scale, and building-integrated applications. Life-cycle assessment evidence shows that solar PV systems offer significant environmental advantages, including low greenhouse gas emissions, favorable energy payback periods, and improved resource efficiency compared with conventional electricity generation technologies. The integration of solar PV with energy storage, smart grid infrastructure, and digital energy management further strengthens system flexibility and energy security. Looking forward, continued innovation in materials, tandem cell technologies, and circular design approaches, together with supportive policy and market frameworks, will be essential for addressing scalability and grid integration challenges. These developments position solar photovoltaic systems as a key contributor to the global energy transition and long-term sustainable energy systems.

REFERENCES

Al Garni, H., Kassem, A., Awasthi, A., Komljenovic, D., & Al-Haddad, K. (2016). A multicriteria decision making approach for evaluating renewable power generation sources in Saudi Arabia. *Sustainable energy technologies and assessments*, 16, 137-150.

Al Shammre, A. S. (2024). The Impact of Using Renewable Energy Resources on Sustainable Development in the Kingdom of Saudi Arabia. *Sustainability*, 16(3), 1324.

Almulhim, A. I., & Abubakar, I. R. (2024). Understanding household attitudes to water conservation in Saudi Arabia: towards sustainable communities. *International Journal of Water Resources Development*, 40(2), 174-193.

Amir, M., & Khan, S. Z. (2022). Energy and Built Environment. *Assessment of renewable energy: Status, challenges, COVID-19 impacts, opportunities, and sustainable energy solutions in Africa*, 3, 348-364.

Bianco, E., Brown, A., Hafner, M., Eicke, A., Eicke, L., & Uherova Hasbani, K. (2019). Renewable Energy Market Analysis. Southeast Europe.

Canton, H. (2021). International energy agency—IEA. In *The europa directory of international organizations 2021* (pp. 684-686). Routledge.

Formolli, M., Lobaccaro, G., & Kanters, J. (2021). Solar energy in the Nordic built environment: challenges, opportunities and barriers. *Energies*, 14(24), 8410.

Fthenakis, V. M., & Kim, H. C. (2011). Photovoltaics: Life-cycle analyses. *Solar Energy*, 85(8), 1609-1628.

Green, M. A., Dunlop, E. D., Hohl-Ebinger, J., Yoshita, M., Kopidakis, N., & Hao, X. (2021). Solar cell efficiency tables (Version 58). *Progress in photovoltaics*, 29(7).

Harrison, C., Joshi, D., & Riley, A. (2025). VIBRIS: Vibration Intelligence Bearing Reliability Integrated System Concept.

Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B., ... & Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. *Renewable and sustainable energy reviews*, 29, 766-779.

Kibert, C. J. (2016). *Sustainable construction: green building design and delivery*. John Wiley & Sons.

Lampropoulos, I., Alskaf, T., Schram, W., Bontekoe, E., Coccato, S., & Van Sark, W. (2020). Review of energy in the built environment. *Smart Cities*, 3(2), 15.

Luo, X., Chen, W., Nie, J., & Li, Z. (2025). Unveiling the Environmental Footprint of Photovoltaic Systems: A Life Cycle Assessment Across Technologies and Configurations. *Cleaner and Responsible Consumption*, 100384.

Peng, J., Lu, L., & Yang, H. (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. *Renewable and sustainable energy reviews*, 19, 255-274.

Pse, A. (2022). Fraunhofer institute for solar energy systems ise. *Photovoltaics Report*. (nd).

Rahman, F., Rehman, S., & Abdul-Majeed, M. A. (2012). Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia. *Renewable and Sustainable Energy Reviews*, 16(1), 274-283.

Razykov, T. M., Ferekides, C. S., Morel, D., Stefanakos, E., Ullal, H. S., & Upadhyaya, H. M. (2011). Solar photovoltaic electricity: Current status and future prospects. *Solar energy*, 85(8), 1580-1608.

Wall, M., Probst, M. C. M., Roecker, C., Dubois, M. C., Horvat, M., Jørgensen, O. B., & Kappel, K. (2012). Achieving solar energy in architecture-IEA SHC Task 41. *Energy Procedia*, 30, 1250-1260.

Yang, N., Shi, W., & Zhou, Z. (2023). Research on application and international policy of renewable energy in buildings. *Sustainability*, 15(6), 5118.

Zuo, J., & Zhao, Z. Y. (2014). Green building research—current status and future agenda: A review. *Renewable and sustainable energy reviews*, 30, 271-281.

©2026 by the Authors. This Article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>)