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Abstract 

The development of semiconductor manufacturing processes is becoming more intricate in 

order to meet the constantly growing need for affordable and speedy computing devices with 

greater memory capacity. This calls for the inclusion of innovative manufacturing techniques 

hardware components, advanced intricate assemblies and. Tensorflow emerges as a powerful 

technology that comprehensively addresses these aspects of ML systems. With its rapid 

growth, TensorFlow finds application in various domains, including the design of intricate 

semiconductors. While TensorFlow is primarily known for ML, it can also be utilized for 

numerical computations involving data flow graphs in semiconductor design tasks. 

Consequently, this SLR (Systematic Literature Review) focuses on assessing research papers 

about the intersection of ML, TensorFlow, and the design of complex semiconductors. The 

SLR sheds light on different methodologies for gathering relevant papers, emphasizing 

inclusion and exclusion criteria as key strategies. Additionally, it provides an overview of the 

Tensorflow technology itself and its applications in semiconductor design. In future, the 

semiconductors may be designed in order to enhance the performance, and the scalability and 

size can be increased. Furthermore, the compatibility of the tensor flow can be increased in 

order to leverage the potential in semiconductor technology. 

Keywords: Semiconductor Design, Machine Learning, Tensorflow, Google, PRISMA 

  

https://orcid.org/0009-0007-0446-0599
https://doi.org/10.47941/ijce.1812
https://orcid.org/0009-0007-0446-0599


International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 5, Issue No. 3, pp. 1 - 9, 2024                                                          www.carijournals.org 

2 
 

    

1. INTRODUCTION  

The applications of ML (Machine Learning) approaches vary from traditional software 

engineering, as machines tend to possess the ability to learn automatically and solve problems 

[1]. In recent years, the ML language "Python" has played a significant part in programming 

and provides a powerful set of tools and libraries. TensorFlow is an end-to-end open-source 

platform that manages all aspects of ML systems [2]. These libraries are rapidly involved in 

developing and implementing complex ML solutions. TensorFlow offers enhanced features 

among various libraries, making the developers model multi-layer DNN (Deep Neural 

Networks) using a high-level API (Application Programming Interface). In addition, more 

complex architectures such as CNN (Convolutional Neural Networks) with TensorFlow are 

widely used in effective tasks such as text classification and image recognition and produce 

improved results when compared with classical ML approaches. For further acceleration of the 

learning process, GPU (Graphics Processing Unit) with TensorFlow can be used when 

operating with high dimensional datasets.  

In a TensorFlow graph, every node is associated with inputs and outputs and reflects the 

implementation of an operation. The data that travels along the graph's edges, from outputs to 

inputs, are known as tensors. Tensors are arrays of arbitrary dimensions where the type of 

elements is determined or deduced during the construction of the graph. A TensorFlow binary 

comprises a collection of operations and kernels that can be accessed through a registration 

system. To enhance the available operations and kernels, one can include additional definitions 

or registrations. TensorFlow provides several capabilities that allow developers to develop 

models [3] by modifying the existing algorithms regarding regularisation options and 

parameter optimization techniques. This makes the TensorFlow library suitable for performing 

different tasks when working with large data processing applications. Recent updates released 

by Google show that TensorFlow 2.15 has been released and includes the simpler installation 

method of NVIDIA CUDA libraries [4].  In this updated version, CUDA has been upgraded to 

version 12.2 to improve the performance of NVIDIA Hopper-based GPUs.  

2. REVIEW METHODOLOGY 

SLR (Systematic Literature Review) is a standard method for reviewing and analysing the 

literature in a recursive process and reducing bias in the study. The present study adopts SLR, 

and the main motivation of this survey is to review numerous recently published papers based 

on TensorFlow in designing semiconductor devices. The main publishers and databases used 

in the survey are Google Scholar, Elsevier, Science Direct, ACM Digital Library, and IEEE 

Explore. Moreover, the papers are analyzed by searching some keywords in the aforementioned 

servers, which are "Overview of TensorFlow," "Machine Learning and TensorFlow," 

"TensorFlow in semiconductor design," and "Machine learning approaches in designing 

semiconductors." Moreover, the papers were also categorized and selected based on the titles 

and abstracts of each paper. This selection depends on the constraints of whether the papers are 

concerned with TensorFlow in semiconductor design or not. Additionally, the citations and 

references of the papers have been verified for the chosen papers to find more relevant studies. 

The in-depth analysis of the present SLR is illustrated using PRISMA guidelines, as shown in 

Figure 1.  
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Figure 1 PRISMA Guidelines 

The study considers the publications from 2020 to 2024 and found a noticeable surge in 

publications in these specific years. Subsequently, inclusion and exclusion criteria were defined 

to select the related studies from the search results. The studies based only on TensorFlow for 

semiconductor designing are included. The exclusion criteria filter out the research studies that 

do not satisfy the other important characteristics. Further, duplicate publications are eliminated, 

and journals not written in English are excluded. The inclusion and exclusion criteria are 

consolidated in Table 1.  
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Table 1 Inclusion and Exclusion Criteria 

Criteria Study Constraints 

Inclusion Publications that focus on the use of TensorFlow in designing and 

manufacturing semiconductors 

Title and abstract relevant to semiconductor designing and 

manufacturing using TensorFlow 

Exclusion Publications with no full-length article 

Duplicate publications 

Studies published before 2020 

Publications not written in English. 

3. OVERVIEW OF TENSORFLOW  

TensorFlow was developed by Google Brain on February 11, 2017, an advanced system that 

represents the next generation in ML [5]. Unlike its predecessor, this system can run on 

multiple GPUs and CPUs for enhanced processing power. TensorFlow is compatible with 

various operating systems, including Linux, macOS, 64-bit Windows, and mobile platforms 

like iOS and Android. One of the key strengths of TensorFlow lies in its versatility, which can 

seamlessly operate on different hardware platforms such as CPUs, TPUs, and GPUs.  It is also 

deployed across various devices, from personal computers for serving clusters to technological 

devices [6]. This is made possible by TensorFlow's modular architecture, which allows for easy 

integration and adaptation. The core computational model of TensorFlow revolves around 

stateful dataflow graphs. These graphs represent the calculations ANN (Artificial Neural 

Networks) performed on tensors, which are multidimensional data arrays. The name 

"TensorFlow" itself stems from this focus on tensor computations.  

Majorly, TensorFlow enables users to speedily implement different ML and DL methods, 

making it incredibly multipurpose and applicable across a wide variety of applications. The 

general architecture of TensorFlow is illustrated in Figure 2.  
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Figure 2 General Architecture of TensorFlow Platform [6] 

A number of APIs (Application Programming Interface) are present in TensorFlow and are 

categorized into two different groups such as high level and low level. This makes the 

developers develop ML models for websites, desktop, mobile, and cloud applications.  

In order to use TensorFlow, initially, a directed graph should be created that consists of nodes 

demonstrating operations on data that are considered to be incoming. These nodes can have 0 

or additional inputs and outputs and perform various operations at different levels of 

abstraction, including pooling or minimizing the data from disk. [7]. Additionally, nodes may 

also have internal states based on their type, allowing the entire graph to maintain its state. 

Once the graph is defined, users can carry out estimations and further calculations by initiating 

a session and executing the formerly distinct operations. In this aspect, TensorFlow follows a 

flow model for these calculations. By dividing the calculations within the graph into nodes, 

TensorFlow enables easy distribution of implementation across diverse devices. This flexibility 

allows TensorFlow to run on various platforms, including mobile devices, individual 

computers, and computer clusters, by efficiently plotting the computation graph onto accessible 

hardware. 

4. APPLICATION OF TENSORFLOW IN SEMICONDUCTOR DESIGN  

The development of technologies in manufacturing semiconductors is crucial to ensure 

effective process control. Prior to process control, verifying proper equipment control is 

significant in semiconductor manufacturing. In the production of semiconductors, the 

sensitivity to any microscopic perturbation is cumulative with the unceasing reduction of 

technology. Hence, the focus is on three intrinsic parameter fluctuations, including ITF 

(Interface Trap Fluctuation), RDF (Random Dopant Fluctuation), and WKF (Work Function 

Fluctuation) for GAA (Gate-All-Around) silicon nanosheet MOSFETs [8]. An ML-based ANN 

(Artificial Neural Network) has been developed to analyze the complex behaviors of multi-
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fluctuation sources. This ANN technique has been implemented using Python's Keras library 

with Tensorflow. The modeling results based on three fluctuation sources have been evaluated 

by means of RMSE (Root Mean Squared Error) and R2 (R Square).  

A substitute for classification with affluent digital circuits is a mixed-signal ML classification 

approach. A single-MOSFET analog multiplier has been implemented to classify HD input 

data into multi-class output space with improved accuracy and less power. In addition, with the 

single-MOSFET, a high-resolution multiplication has been applied by passing features and 

their corresponding weights into gate and body inputs. This framework attests the ML 

hyperparameters and learning algorithms for each binary classifier based on automated close-

loop SPICE (Simulation Program with Integrated Circuit Emphasis)-Python feedback. This 

helps enhance overall performance, resilience to PVT variations, and classification accuracy. 

Here, the classifier has been trained using TensorFlow in Python and produces an accuracy of 

75% with 67.3pJ energy consumption per prediction [9]. The schematic of an integrated system 

consisting of vote extractors, MAC (Multiplication and Accumulation) array, multiplexers, 

resistive voltage divider, and memory is illustrated in Figure 3.  

 

Figure 3 Schematic Diagram of Classifier with MOSFET array, Multiplexer, Voltage 

Divider, Vote Extractor, and Memory [9].  

To mechanize the construction and testing of semiconductor devices, only a few entities have 

the infrastructures required for generating sufficient data. A practical approach to generating 

custom datasets has been done to apply ML to device simulation [10]. Besides, multiprocessing 

and parallel computing methods have been performed to create our datasets. By employing 

CNN, a simultaneous process of the I–V (Current-Voltage) data has been obtained from 

simulations. The objective is to predict the characteristics of devices from device parameters 

and vice versa. These algorithms were implemented using TensorFlow. The use of these 

datasets significantly reduced simulation time, enabling the possibility of utilizing smart search 

approaches to achieve ultra-fast device optimization. Moreover, this technique makes it 
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feasible to simulate whole semiconductor manufacturing processes without expensive 

equipment.  

 3D semiconductor devices provide the ability to tackle and overcome the limitations of 2D 

semiconductors. A 3D NAND (Combination of NOT and AND) flash memory device is 

currently considered the commercially used 3D semiconductor device, which stacks more than 

100 semiconductor material layers. This helps provide improved energy efficiency and extra 

storage space compared with 2D NAND flash memory devices. So, the study implements a 

non-destructive approach for the chunkiness characterization of multilayer semiconductor 

devices. This has been performed by using ML and optical spectral measurements. The study 

has involved three types of ML algorithms: ANN, linear regression, and SVR (Support Vector 

Regression). These approaches are regression models, which are used for detecting the 

thickness of the layers (continuous values). The results of the regression models have been 

analyzed by using RMSE, and an outlier detection model has also been developed to classify 

the outlier and normal devices to analyze ultra-high-density 3D NAND flash memory devices 

[11].  

5. CHALLENGES AND LIMITATIONS 

ML with TensorFlow is considered a valuable tool in designing semiconductors, but it does 

have certain limitations. The challenges are as follows, 

 Data availability: ML models need high-quality data to train efficiently. In the field of 

semiconductor design, obtaining sufficient and diverse data can be challenging due to 

limited access to proprietary or sensitive information. 

 Expert knowledge: Designing semiconductors requires domain expertise and intricate 

knowledge of physical principles. ML can assist in certain aspects and cannot replace 

the need for human expertise and intuition in the semiconductor design process. 

 Generalization: ML models trained on specific datasets may struggle to generalize well 

to new, unseen data. Semiconductor design often involves complex and unique 

challenges, and it can be difficult for machine learning models to capture all the nuances 

required for accurate predictions in such scenarios. 

 Interpretability: ML models, such as those built with TensorFlow, are often considered 

black boxes, meaning it can be difficult to understand and interpret the reasoning behind 

their predictions. This lack of interpretability can be a limitation when designing 

semiconductors, where developers must understand the underlying principles and 

optimize for specific requirements [12]. 

It's important to note that while TensorFlow and ML have their limitations, they can still be 

valuable tools in the semiconductor design process when used in conjunction with human 

expertise and traditional design methods.  

6. FUTURE TRENDS AND DEVELOPMENTS  

In order to overcome these limitations, different techniques can be used in the future, which 

includes  
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 In future, semiconductors must be designed to handle workloads' computational 

demands; thus, performance optimization must be concentrated.  

 As the size and complexity of the tensor model increase, it is important to design 

semiconductors that can scale efficiently. This encompasses factors like 

interconnectivity and memory capacity for accommodating huge models in future.  

 Ensuring compatibility with tensor flow libraries, APIs, and development tools will aid 

developers in leveraging their full potential in semiconductor technology.   

7. CONCLUSION  

Modern devices rely heavily on semiconductors, crucial components that adjust their 

resistance based on light and heat. Nevertheless, developing semiconductors using 

TensorFlow's machine-learning techniques is a complex task. Specifically, TensorFlow 

libraries are employed to design intricate semiconductors due to their suitability for 

handling large-scale data processing applications. Recognizing the numerous benefits of 

using TensorFlow libraries in semiconductor design, this systematic literature review 

focuses on examining various papers that explore the integration of artificial intelligence 

and TensorFlow libraries in semiconductor design. The frameworks discussed in this 

review enable the generation of specific characteristics and reverse engineering parameters 

with exceptional flexibility. However, recent studies highlight existing challenges that can 

be overcome in the future, offering recommendations for further research. 
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