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Abstract 

One of the most anticipated features of 5G and subsequent networks is wireless virtual reality 

(VR), which promises to transform human interaction via its immersive experiences and game-

changing capabilities. Wireless virtual reality systems, and VR games in particular, are 

notoriously slow due to rendering issues. But most academics don't care about data correlation or 

real-time rendering. Using mobile edge computing (MEC) and mmWave-enabled wireless 

networks, we provide an adaptive VR system that enables high-quality wireless VR. By using 

this architecture, VR rendering operations may be adaptively offloaded to MEC servers in real-

time, resulting in even greater performance advantages via caching.The limited processing power 

of VR devices, the need for a high quality of experience (QoE), and the small latency in VR 

activities make it difficult to connect wireless VR consumers to high-quality VR content in real-

time. To solve these problems, we provide a wireless VR network that is enabled by MEC. This 

network makes use of recurrent neural networks (RNNs) to provide real-time predictions about 

each user's field of vision (FoV). It is feasible to simultaneously move the rendering of virtual 

reality material to the memory of the MEC server. To improve the long-term VR users' quality of 

experience (QoE) while staying within the VR interaction latency limitation, we provide 

decoupling deep reinforcement learning algorithms that are both centrally and distributedly run, 

taking into consideration the connection between requests' fields of vision and their locations. 

When compared with rendering on VR headsets, our proposed MEC rendering techniques and 

DRL algorithms considerably improve VR users' long-term experience quality and reduce VR 

interaction latency, according to the simulation results. 

Keywords: Wireless Virtual Reality, Mobile Edge Computing, Future Wireless Networks, field of 

vision (FoV), and Deep Reinforcement Learning 
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I. INTRODUCTION  

Every aspect of our daily lives is profoundly affected by intricate and cutting-edge technologies 

like social media platforms, the IoT, AI, VR, and many others. The way this system works affects 

many different things that people do. As a result, understanding the dynamics of the system and 

what they mean for customer feedback is essential. When it comes to data mining, emotion 

analysis is one of the most popular and effective methods [1]. The need to estimate and show user 

motion in VR applications is growing in tandem to the popularity of VR games and devices. The 

majority of virtual reality avatar posture estimate algorithms use online motion capture and 

inverse kinematics[2]. One exciting new way to interact with VR without using your hands is via 

speech recognition technology. On the other hand, it does have a few downsides, such the fact 

that it isn't really accessible to those who have trouble making themselves heard in busy public 

spaces or in environments with a lot of background noise. Using a silent speech recognizer 

system in a VR environment using facial electromyograms might help overcome these constraints 

[3]. With the use of deep learning with VR technologies, the goal is to digitize the grotto 

paintings' contents in order to preserve them. The grotto paintings are analyzed and modelled 

using virtual reality technology. The framework is based on data collection technology for 

cultural assets, and it presents important notions of a digital library. In order to restore and 

recreate grotto paintings, it is necessary to construct a computer identification model. This model 

incorporates the color with materialization principles of these murals, as well as the historical 

relics information collecting technologies under DL and VR [4]. The cognitive capacity to 

choose, organize, and construct other representations when processing information is known as 

representational flexibility. Students on the autistic spectrum are underrepresented in STEM 

fields due to a lack of representational flexibility. Researchers have shown that using VR 3D 

simulations may help adolescents with ASD improve their RF skills [5]. One promising use case 

for next-gen mobile networks is VR using wireless technology. But current mobile networks 

struggle to handle the ultra-low latency and enormous data rates needed for wireless VR. One 

interesting approach to enabling wireless VR is the multi-access edge computing system, which 

offers processing and caching capabilities at the network's periphery. However, frequent handoffs 

may diminish the quality of the experience for mobile VR users [6]. Rather of relying on standard 

passwords, which may be compromised by hostile actors, VR apps could be protected by using 

users' motion behavior as a biometric signature. This would allow for continuous authentication 

and identification of users. Over time, users' behaviors naturally vary, impacting their body 

movements and the trajectories of virtual reality equipment like the headgear and controllers [7]. 

Online courses, where students engage in virtual classrooms with little face-to-face contact, have 

becoming more common [8]. By utilizing a person's motion trajectories as a unique signature, we 

can implement task-oriented behavioral biometric identification of users interacting in VR 

environments, which allows for seamless continuous authentication. Behavioral biometrics 

methods based on deep learning perform better when fed whole or almost full user trajectories, 

but worse when fed short segments starting from the beginning of the job [9]. Both academics 
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and businesses are showing an interest in the cutting-edge VR applications that are currently 

under development. A wide range of everyday activities are the primary focus of wireless virtual 

reality applications, including intelligent instruction, amusement, healthcare, travel, building 

design, transportation, and factory automation. The idea of QoE, that describes the service's 

quality from the perspective of its end users, is strongly tied to these interactive apps that strive to 

provide consumers with immersive experiences [10]. 

A. Contributions  

  The MEC-enabled wireless virtual reality (VR) systems that we suggest can upload the VR 

system's rendering model to the MEC server. They are also able to anticipate the field of view 

(FoV) of each user in real-time.  

 We give a decoupled learning mechanism to enhance the VR user experience over the long 

run. To improve the two subtasks—field of view (FoV) prediction and portrayal of MEC 

connection—independently, this technique employs a deep reinforcement learning (DRL) 

algorithm in conjunction with a Recurrent Neural Network (RNN) predictor. 

Thanks to this approach, the suggested technique outperforms the current crop in terms of 

scalability and adaptability to system dynamics. Compared to the other baseline algorithms, the 

suggested one performs better in terms of latency, convergence time, and quality of experience 

utility value, according to the simulation findings.  

The rest of the paper is organized like this. In Section II, the subject formulation as well as 

system model are presented. The proposed procedure is detailed in Section III. In Section IV, we 

look at the simulation results and draw some conclusions. Section V wraps up the article and 

delves into possible avenues for further research. 

II. RELATED WORK 

Use a deep learning technique to predict the user's upper body position in real time in [11]. 

Authors present a new approach that uses 3D motion capture information to train, drawing 

inspiration from a traditional regression model. Based on all the data from the motion capture, 

our approach employs a CNN (convolutional neural network) that can modify its input and output 

to accept input from both the head and both hands. One possible use case is creating a consumer's 

virtual identity inside a VR app after feeding the model typical inputs such as an HMD and two 

controllers. Finally, they agreed on their proposed pose estimation technique after developing 

single- and multi-user applications, testing them with actual users, and comparing the results to 

existing methods for virtual reality avatars. In order to measure functioning EMGs (fEMGs), a 

small number of electrodes are put around the user's eyes. In their proposal for an SSR device, 

the researchers of [12] noted how simply it might be integrated into current VR headsets. By 

analyzing comparable data from other people and modifying it using dynamic positional warping, 

a method was created to improve the accuracy of fEMG signal classifications. A few of sites far 

from the phonatory organs were used to capture the data. The proposed SSR system had an 

impressive 92.53% rate of success in categorizing six separate fEMG patterns generated by six 
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silently spoken sentences, according to the testing data. We employed an online SSR 

technologies to further show how their technique works as a hands-free interface in real-world 

virtual reality applications. The work shown in teaches students to use deep CNN-LSTM 

classifier to detect and eliminate distractions in a virtual reality (VR) classroom setting [13] 

utilizes generic characteristics taken from data collected by VR headset sensors (head-tracking, 

hand-tracking, as well as eye-tracking) such as angular velocity, positional velocity, pupil 

diameter, and eye openness. Their classifier outperforms two previous methods in terms of 

accuracy and feature generalizability, and they provide early findings showing an accuracy of 

94.93%. By developing a more precise and broadly applicable method for distractor 

identification, they think their work may contribute to the advancement of educational virtual 

reality. The goals of that research endeavor were to develop a system for creating and instructing 

neural networks to address various real-world issues, academic challenges, and educational 

needs, and to assess the system's practicality and usefulness [14]. That study enlisted the help of 

five professors with experience teaching ANNs at two different colleges in order to develop a 

user-friendly framework. A total of 31 students with prior knowledge of neural networks were 

asked to participate in an online survey regarding the following topics: "the main challenges in 

learning NNs" as well as "key specifications in a Visual Instruction Tool such as the most desired 

characteristics of a visualization instrument for explaining NNs" that they would have utilized 

while taking the course. They also looked at how their pupils would learn about ANNs using that 

method by doing an observational study. Their framework's ability to generate ANNs with a 

visual presentation is compatible with AR and VR environments, enabling us to show and control 

networks in a virtual world. For seamless virtual reality video handoffs, researchers in [15] 

suggested a proactive caching, processing, as well as communication (3C) resource distribution 

strategy. More precisely, the 3C capabilities at the BS govern the file size and quality, and the 

goal base station pre-caches the 3D and 2D video for rendering. They then determine the best 

approach to proactive 3C allocation of resources using a deep learning reinforcement method that 

does not rely on models. The numerical data suggests that the proposed technique might provide 

VR users with high quality of experience when switching between base stations. In [16], I created 

online virtual classrooms using VRChat. As an added bonus, the authors built a facial expression 

detection system for virtual reality classes using cutting-edge computing, OpenCV, with Python 

since they thought it would be crucial to know the the pupil's emotional state when studying VR 

online. Using real-time face recognition to compare VRChat's VR lessons to other traditional 

online teaching techniques and to verify their effectiveness, they verified VRChat's VR courses. 

Using face recognition and surveys in the virtual reality online class helped students concentrate 

and stay on task for longer periods of time. Applying deep learning in accordance with the 

procedures outlined in [17] will allow for the objective prediction of QoE. The prediction model 

investigates the matter by studying how the functioning of wireless networks affects the quality 

of virtual reality 360-degree streaming video. It uses LSTM (long short-term memory) neural 

systems for encoding and decoding, and it uses only quantifiable quality of service metrics to 

provide real-time predictions on the total transmission-related quality of experience value. They 
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put the prediction model through its paces on a testbed for open radio access networks that 

adheres to the O-RAN standards for interfaces. Findings from pilot projects using Fiber Optic 

supplemental learning modules are the focus of the research reported in [18]. Scenario planning, 

low poly optimization 3D asset production, scenario integration, triggering each interaction, 

multiuser environments, and implementation are the several steps that make up the module 

development process. Measurements are taken using OVR metrics to construct a solid VR Fiber 

Optic application. The purpose of that metric is to ascertain the application's dependability in 

relation to the user experience. With an OVR metric measurements, the frame rate may go as 

high as 43 and as low as 27. The created value can be useful for virtual reality apps with a low 

poly asset design. Customer satisfaction is also measured using the PIECES Framework. Users 

had a positive impression of the VR FO programme as an e-learning module, according to the 

results of the measurements, which range from 3.4 to 4.91 on each variable. Using brain wave 

studies that tracked how subjects' emotions altered in response to changes in ceiling height, the 

investigators in [19] were able to calculate the stress score for each building in the region. They 

utilized VR to build a replica of the Reich Chancellery so that they could conduct two 

experiments using the EEG data acquired in each room. They started by looking at the most 

active region and figuring out the beta wave variations relative to the stress indexes. Our results 

were double-checked and areas with a high stress index were identified using deep-learning 

algorithms after the authors investigated the association between ten distinct brain wave types 

and waveforms. To calculate such a value, a deep-learning framework was subsequently 

developed. The purpose of that research is to provide the outcomes of the pilot program for FO 

instructional modules [20]. Scenario planning, low poly optimization 3D asset production, 

scenario integration, triggering each interaction, multiuser environments, and implementation are 

the several steps that make up the module development process. Measurements are taken using 

OVR metrics to construct a solid VR Fiber Optic application. The purpose of that metric is to 

ascertain the application's dependability in relation to the user experience. With an OVR metric 

measurements, the frame rate may go as high as 43 and as low as 27. Virtual reality applications 

that utilize low poly asset architecture may operate well on the generated value. Customer 

satisfaction is also measured using the PIECES Framework. Users had a positive impression of 

the VR FO programme as a virtual instructional module, according to the measurement results 

(3.4–4.91) for each variable. The attentional tendencies of English language learners processing 

online tasks are investigated in a research that employs virtual reality and deep learning methods 

[21]. The results of the studies illustrate the correlation between the linear attentional 

management model and the performance of young second language learners on online tasks, 

providing a visual representation of the influence of that model on task completion. Additionally, 

the model's regression and prediction accuracy is rather excellent. The article presents the 

outcomes of eight of the most prevalent physical training exercise situations used in post-stroke 

rehabilitation approach [22]. While completing various rehabilitation activities, depth sensors 

reliably detected critical aspects of the subject's posture. The system is suitable for usage in real-

time applications because to its average reaction time of 23 ms. In addition, the system's skeletal 
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feature extraction is helpful for differentiating between those with normal skeletons and those 

with lower back discomfort. Their findings provide credence to the idea that the motion 

recognition-based system can monitor rehabilitation progress, evaluate the efficacy of the 

patient's physiotherapy activities, and more. In their earlier study, researchers used 6LU7, the 

first publicly available Mpro crystal structure [23]. Using an AI-driven generating chemistry 

technique, Insilico Medicine unveiled the first new protease inhibitors on February 4, 2020. The 

number of X-ray structures found in co-crystallized Mpro with different ligands, some of which 

are covalent and others of which are non-covalent, has surpassed a hundred since then. Using the 

newly-disclosed 6W63 atomic structure of Mprocomplexed along with a non-covalent inhibitor, 

they integrate the ligand-based with crystal structure-based methods used in our older 

investigation. In order to spark lively discussions and thorough analysis among medicinal 

chemists, 10 sample structures with three-dimensional representations in PDB format have been 

published for potential elaboration. The efficiency of e-learning and the variables and 

circumstances leading to DML in distant mode higher education utilizing social virtual reality 

environment are the main topics of the [24] literature study. That led researchers to compile the 

results of 33 empirical investigations on HE that took place between 2004 (when VR first 

appeared) through 2019 (before coronavirus emerged) into a comprehensive literature evaluation. 

They studied the relative relevance of DML's emotional, social, as well as cognitive components 

in SVREs using a research framework. The results demonstrate that SVREs may provide 

cognitively demanding simulations that are both realistic and personally relevant, as well as 

opportunities for active interpersonal as well as cooperative learning. In that research, the authors 

want to utilize a machine-deep-ensemble learning approach to categorize cases of cybersickness 

brought on by VR immersion [25]. Twenty participants watched a virtual reality film for around 

five minutes while having their heart rate variability and respiratory signal characteristics 

monitored. Following the experiment, participants were assessed for CS by having them answer 

questions designed to gauge their current CS state. In order to determine and categorize the users' 

VR immersion CS, a machine-deep-ensemble learning framework was built utilizing the data. In 

order to generate prediction data, the ensemble model classified the data using a convolution 

neural network. The model included a number of stacking machine learning methods, including 

AdaBoost, k-nearest neighbor, support vector machine, and random forest. Subjects' CS may be 

categorized as neutral, non-CS, nor CS using the model's multiple classes of skills. 

III. PROPOSED WORK 

A. System Model  

As seen in Figure 1, we take into account a wireless virtual reality system in which several MECs 

are linked to a centralized control system via a fiber link to supply VR users with wireless 

connections. The main controller is able to get undistorted, real-time 2D movies from the main 

network thanks to its fiber connection. As stated in [29], the core network may transform 2D 

pictures into VR films by sending them to various edges. Hence, we take it as read that the 

necessary 2D pictures obtained from Edges / UAVs or additional equipment are instantly 
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accessible to the core network. We also assume that the MEC is limited to rendering for the same 

field of view (FoV) for all VR users in time slot 1.  

Virtual reality gaming is the main topic of this article. The standard components of a virtual 

reality system are a headgear, controller, and renderer. Wearing the headset has a dual purpose: 

first, it displays virtual reality (VR) material to the user; second, it tracks their posture, which 

includes their three-dimensional (3D) location and orientation inside the virtual environment. 

Physical buttons, touchpads, and sensors make up the controller, which is responsible for 

receiving user inputs apart from user position. For virtual reality systems with social components, 

these interactions could originate from other users online. When the user changes their position or 

interacts with the environment, the renderer generates fresh frames that are shown on the HUD. 

Models are representations of 3D objects or virtual environments specified by a computer 

language or data structure; rendering is the process of creating images from these models. We 

assume in this work that the relevant models are installed on both handheld gadgets as well as 

MEC servers, which opens up the possibility of local, distant, or cooperative rendering. 

Typically, virtual reality (VR) material may be categorized into two parts: interactions in the 

front and the virtual world in the backdrop. Virtual reality games often employ real-time 

rendering, in contrast to other popular VR applications that display immersive films. However, 

two aspects are noteworthy: 1) the foreground interactions in VR games are more complex and 

unexpected, but the rendering burden is relatively low; 2) the backgrounds in VR games are more 

lifelike and immersive, but the processing workload is huge because of all the rich features and 

complicated textures. Resolution, frame rates, and processing power are common user-perceived 

experience parameters. There are three different ways that virtual reality (VR) material may be 

shown, allowing users to cater to different computer requirements and resolution requirements: 1) 

Rendering locally on handheld devices, 2) Rendering remotely on MEC servers, as well as 3) 

Rendering cooperatively, whereby background and foreground environment are displayed on 

MEC server. A head-mounted display (HMD), a server, and a client make up the majority of the 

system. 

 Edge Server: We make use of a VoIP server with a Netcode server as our tools. Netcode 

is one concept in video game development. In our network, the Netcode server is 

responsible for controlling the shared scene state, keeping everyone's progress 

synchronized, and show an accurate as well as dynamic portrayal of the room's current 

state. The VoIP server regulates the transmission of audio packages across the network. It 

is responsible for receiving and distributing voice packets from each client.  

Customer or End-User: The client, which is usually a powerful computer, is responsible 

for gathering microphone input from the HMD, obtaining the pulse coding modulated 

(PCM), compressing the PCM packets, and sending them to the VoIP server. At the same 

time, it decompresses the PCM packets received by other clients and processes them 

using the spatial audio algorithms [50] so that they may be played back with room 

reverberation as well as direction. The client changes its location in relation to other 
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clients' positions that it has received from the Netcode servers and synchronizes its own 

position with the server. 

 HMD: The client receives real-time data about the user's physical state and interactions 

while they encounter the virtual world via a head-mounted display. 

VR Rendering in MEC

Rendering Request 
from VR Device

Core Network

Central Controller

 

Fig. 1. Wireless VR system in cellular network 

We take into account a cellular network that is mmWave/sub-6 GHz based and has MEC 

capabilities, as shown in Figure 1, and it serves a group 𝒰 = {1,2,3,… , 𝑖, … , 𝑈} of 𝑈handheld 

virtual reality headsetsℬ = {1,2,3, … , 𝑗, … , 𝐵} of 𝐵 base stations (BSs), meaning any BS with a 

MEC server present. The principal use of VR in this study is engaging in an exciting game. At 

the outset, we give you a quick rundown of what the system can do. The next sections go on to 

discuss the mathematical foundations of computing, communication, and caching. 

B. QoE Model  

Here, we establish a quality-of-experience (QoE) utility metric for measuring VR users' QoE, 

with latency and energy usage provided as inputs. 

Prior to anything else, you will find the clients' energy utilization and delay. According to user i, 

the perceived latency is 
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𝑇𝑖 = 𝐼{𝑜𝑖=0} ⋅ 𝑇𝑖
{
+ 𝐼{𝑜𝑖=1} ⋅ 𝑇𝑖

remote 
+ 𝐼{𝑜𝑖=2} ⋅ 𝑇𝑖

coop 
. 

Likewise, user i's energy usage may be determined by 

𝐸𝑖 = 𝐼{𝑜𝑖=0} ⋅ 𝐸𝑖
𝑙 + 𝐼{𝑜𝑖=1} + 𝐸𝑖

remote 
+ 𝐼{𝑜𝑖=2} ⋅ 𝐸𝑖

coop 
.  

There are two better experience criteria that gamers may use to guarantee they are totally 

engrossed in virtual reality: (i) For the whole reaction time to be shorter than τ, say, 25 

milliseconds, two conditions must be met: one example of a framerate that exceeds η PFS is 60 

PFS. Another consequence of these two prerequisites is little frame-to-frame jitter. We calculate 

the QoE utility for VR users for a certain time period and find that it is: 

𝑄𝑖(𝐕, 𝐀, 𝐎) = 𝐼{𝑇𝑖(𝑡)≤min(𝜏,
1

∼
}}
, 

that records the outcome regardless of the material 𝑟𝑖satisfied all of the requirements in (18) and 

was sent to user i at the moment t. 

Over the course of T time slots, we examine the VR transmission. As a result, we establish the 

following measure to describe the VR user's QoE. 

𝐼𝑖(𝐕,𝐀, 𝐎) =∑  

𝑇

𝑡=0

𝐼
{𝑇𝑖(𝑡)≤min{𝑟,

1

𝜋
}}
, 

This indicates the dependability of user i's transmissions over time.  

C. Duel DQN Model  

Initialization: The many simulation scenarios, including the cellular network's virtual 

reality system, are put up during the setup phase. The weights as well as replay memory, among 

other Q-network components, are also initialized𝜃and 𝜃−. 

Double-Dueling-Deep 𝑄 Network: We apply double-dueling DQN in this work. The suggested 

problem's high-dimensional action space as well as state space necessitates the usage of DQN to 

approximate the value function. Two methods are used to enhance DQN's performance: double 

DQN as well as dueling DQN. 

Overestimations occur in the conventional DQN because applying the max to the already 

erroneous Q values causes a bigger approximation error. The concept behind double DQN is to 

separate the selection process from the assessment process in order to avoid the overestimation 

issue. A mathematical expression for it would be 

𝑦𝑡 = 𝑟𝑡 + 𝜖𝑄(𝑠𝑡+1, argmax𝑄(𝑠𝑡+1, 𝑎𝑡; 𝜃𝑡); 𝜃𝑡
−) 

Through the use of online weights to choose the activities 𝜃, and making predictions using the 

present values𝜃𝑡
− , It has the potential to improve performance by providing more precise 

estimates of Q values.  
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In reality, there are cases when the environmental impact of some governments' activities is 

negligible. Thus, it is superfluous to try to guess the worth of every single action for a bunch of 

different situations. Part of the Q value in dueling DQN is the benefit of taking actions an at 

condition s, and part of the Q value is the value of being in state s. A brief summary of rival 

DQNs is provided below: 

𝑄(𝑠, 𝑎) = 𝐴(𝑠, 𝑎) + 𝑉(𝑠).  

Because not every action affects the state while in certain states, battling DQN may speed the 

training procedure to some degree.  

When deciding what to do, you may use one of these approaches. In this article, we employ the ε-

greedy method, which randomly picks an action from a set of options having a likelihood of ε and 

selects the one with the highest Q value to investigate−𝜀, (i.e., exploitation). 

Replay Memory: Non-stationary distributions may be caused by strongly correlated states. To 

lessen the severity of these effects, DQN employs a replay memory method, where the 

experience tuple 𝑒𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1)is kept. For training purposes, it smooths out distributions 

across a large number of past occurrences, allowing for a more random sampling of past 

experiences rather than only the present.  

The target network's architecture is indistinguishable from the main Q network's. The balances of 

the target network are copied from the primary network each G steps to prevent becoming caught 

in feedback loops among the two networks.  

Minimizing the loss functions is an important part of training for the target network. 

𝐿(𝜃) = 𝐸[(𝑦𝑡 − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃𝑡))] 

It makes use of the gradient descent approach. The next step, after initiation, is training. The ε-

greedy approach is used to pick an action once the environment is observed. Subsequently, the 

fresh experience is committed to replay memory following action execution and observation of 

reward. Finally, the target network is eventually reached by training the main Q networks to 

minimize the loss operation, with the target network being revised every G steps. The likelihood 

of exploration and the velocity of learning α may change throughout the training session.  

Each user in the reinforcement learning framework acts as a smart agent in time slot t, responding 

to state and rewards. The system advances to time slot t+1 and the user modifies its state once 

actions are taken in accordance with policy. Below, you can see the state of our model: Since 

each individual in the VR networks decides on their own strategy, (1) defines the whole set of 

states in the network. 

Action: Virtual reality's whole collection of user actions is described as 𝑨(𝑡) =

{𝑎1(𝑡), 𝑎2(𝑡),… , 𝑎𝑁(𝑡)} in time slot t, where 𝑎𝑖does the deed pertain to the state. 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 5, Issue No. 3, pp. 46 - 66, 2024                                                 www.carijournals.org 

56 

 

    

Policy: We define the likelihood of user i's strategy selection in time slot t as𝜋𝑖(𝑡). The policy set 

(𝑡) = 𝜋1(𝑡),… , 𝜋𝑁(𝑡) . Every iteration begins with the adoption of actions based on the 

probability policy. Here is how the transition functions is defined using the strategy selection 

probability: 

𝑃(𝑠, 𝑠′, 𝑎) = 𝑃(𝑠(𝑡 + 1) = 𝑠′ ∣ 𝑠(𝑡) = 𝑠, 𝑎(𝑡) = 𝑎). 

Reward: Defined in (13), the reward system is dependent on the actions and states of all users of 

VR in the network. in addition, we indicate𝑟(𝑠𝑡, 𝑎𝑡) as the 𝑹sum (𝑠, 𝑎)to user i at interval t 

moments in time. 

D. VR Rendering using MEC-DQN 

instead of user i's rendering work, it is 𝐼𝑖 = {𝐶𝑖
𝑏 , 𝐶𝑖

𝑓
, 𝐷𝑖

𝑓
, 𝑞𝑖, 𝑟𝑖}, where 𝐶𝑖

𝑏  gives the amount of 

background CPU execution required to render, 𝐶𝑖
𝑓

displays the amount of processing power 

required to display the interactions in a prominent manner, The amount of data needed for front-

end interactions is represented by 𝐷𝑖𝑓, while the amount of data needed for a single VR frame, or 

the necessary pixel density, is denoted by 𝑐𝑖. 𝑟𝑖 ∈ 𝒞marks the information that the person I have 

requested possesses. Just to review, there are three methods that are taken into account while 

displaying the picture frames for virtual reality users: local, remote, as well as cooperative. A set 

of mode choice indications is defined by us as𝐎 = {𝑜𝑖, 𝑖 ∈ 𝒰}, where there is 𝑜𝑖 ∈ {0,1,2}. When 

there is 𝑜𝑖 = 0, regional analysis with an emphasis on consumers. If o_i=1, If o_i=2, then users i 

is participating in cooperative rendering, and else, user i is rendering remotely. 

1. Local Rendering: Here, the front and rear should be rendered simultaneously by the mobile 

device. Assumption number one: the mobile device's processing power is𝑧𝑙 (cycles/seconds). 

Hence, the delay starting from the frame's request is 

𝑇𝑖
𝑙 =

𝐶𝑖
𝑏 + 𝐶𝑖

𝑓

𝑧𝑙
 

The amount of power needed for rendering on-site is 

𝐸𝑖
𝑙 = 𝜉𝑇𝑖

𝑙 

where𝜉The calculation capability's energy consumption unit is joules/seconds 𝑧𝑙. 

2. Remote Rendering: Here, MEC servers are used to carry out the rendering process. 

Several data-processing processes are usually required. 1) Before proceeding, be sure you 

give the relevant BS with the necessary background interaction facts. 2) Lastly, check 

whether the cache already has the background content you requested. Hence, you need to 

have the interactions happen in the foreground followed by involve them into the final 

frame. Create the frame by combining the available models with the provided interaction 

data. In order to compress the shown frame, the third step is to encode it. Fourth, make the 

encrypted data available to the consumers. Mobile devices need frame decoding (5). 
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Because users' decoding ability could vary, it is critical to retain the uncompressed 

background settings. When it comes to processing power, how effective are MEC 

servers? The frequency z_c is measured in hertz/s. The resultant delay from remote 

rendering is 

𝑇𝑖
𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑇𝑖

𝑡𝑟,𝑓
+ 𝑇𝑖

𝑟𝑒 + 𝑇𝑖
𝑒𝑛 + 𝑇𝑖

𝑡𝑟,𝑑 + 𝑇𝑖
𝑑𝑒 

where𝑇𝑖
𝑡𝑟,𝑓

=
𝐷𝑖
𝑓

𝑅𝑖𝑗
𝑢  show how long it takes for an uplink transfer to complete, The MEC servers 

calculate the rendering time, which is represented as 𝑇𝑖𝑟𝑒. 

𝑇𝑖
𝑟𝑒 =

{
 
 

 
 𝐶𝑖

𝑓

𝑧𝑐,𝑖
+ 𝑇𝑖,𝑐

𝑖𝑛,  The required environment is cached, 

𝐶𝑖
𝑏 + 𝐶𝑖

𝑓

𝑧𝑐,𝑖
,  otherwise ,

 

where𝑇𝑖,𝑐
𝑖𝑛 =

𝑘(𝑞𝑖)

𝑧𝑐,𝑖⋅𝑏𝑧𝑐
engage the final frames of the MEC server design, where 𝑘𝑐𝑖is the quantity of 

data that requires processing as well as 𝑏𝑧𝑐is the amount of data that can be handled in one cycle 

through using the central processing unit. 𝑧𝑐,𝑖 =
𝑍𝑐

∑𝑖∈𝒰  𝛼𝑖𝑗𝐼𝑜𝑖≠0
everything that every user associated 

with BS 𝑏 has access to in terms of computer resources, where𝑼{⋅performs an indicator 

operation, which is described as 

𝐼{⋅} = {
1,  if {⋅} is true ,

0,  otherwise. 
 

𝑇𝑖
en 
=

𝑓(𝑞0)

𝑧𝑐𝑐,𝑖⋅𝑏𝑧𝑐
stands for the MEC server's compression latency, where 𝑐0 is the original frames' 

resolution and 𝑏𝑧𝑐 is the calculated data size (in bits) in a single central processing unit cycle. As 

said before, 𝑓(𝑞0) is a function of 𝑞0, in order to compress each frame with the resolution, the 

data volume must be determined 𝑞0. 𝑇𝑖
𝑡𝑟,𝑑 =

𝑔(𝑞0)

𝑅𝑖𝑗
𝑑 indicates the time it takes for the compressed 

frames to be sent downlink, where𝑔(𝑞0)indicates the amount of data after compression and is an 

expression of q_0. And 𝑇𝑖
𝑑𝑒 =

ℎ(𝑞𝑖)

𝑧𝑙⋅𝑏𝑧𝑙
b_zl is the amount of data calculated (in bits) in one CPU 

cycles on the mobile device, and it stands for the decoding delay for the compressed frames. 

Importantly, 𝑐𝑖 is a measure of 𝑐𝑖, which stands for the quantity of data that has to be handled in 

order to decode the frames. Collaborative Drawing: At this point, the MEC servers render the 

background environment, while the mobile device renders the interactions in the foreground. In 

order to complete the rendering process, it is necessary to follow various conventional steps. We 

immediately separate the rendering process into two parts: interactions in the front and 

surroundings in the background. The local CPU of the mobile device is used to render foreground 

interactions. You should check the cache for the backdrop items you want to use before 
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interacting with them. Compressing and delivering the items to users is done after checking 

whether they are previously cached. In any case, you may use the MEC server as a tool to 

generate the backdrop scenes. Send the user the background material that has been rendered and 

compressed. Concurrently, the MEC server decides whether or not to store the updated 

background data in a cache. 3) After the foreground interaction processing is finished and the 

background is received, it compresses the background content. Then, the mobile device interprets 

the background material and merges the final frames. Hence, the overall rendering delay for 

cooperative tasks may be described as 

𝑇𝑖
coop 

= max{𝑇𝑖
𝑓,𝑟𝑒

, 𝑇𝑖
𝑐} + 𝑇𝑖,𝑙

𝑖𝑛 

where𝑇𝑖
𝑓,𝑟𝑒

=
𝐶𝑖
𝑓

𝑧𝑙
 represent the amount of time required by mobile devices to determine the 

interactions in the foreground, and𝑇𝑖,𝑙
𝑖𝑛 =

𝑘(𝑞𝑖)

𝑧𝑙⋅𝑏𝑧𝑙
is the duration that images captured on mobile 

devices take to fully load. 𝑇𝑖
𝑧2This is calculated as the time it takes for the MEC server to process 

requests. 

𝑇𝑖
𝑐 = 𝑣𝑟𝑖,𝑗𝑇𝑖

𝑏,𝑟𝑒 + 𝑇𝑖
𝑒𝑛 + 𝑇𝑖

𝑡𝑟,𝑑 + 𝑇𝑖
𝑑𝑒 

where𝑣𝑟𝑖,𝑗is signifies that the requested content for user i has been cached, and 𝑇𝑖
𝑏,𝑟𝑒 =

𝐶𝑖
𝑏

𝑧𝑐,𝑖
shows 

the time required for a MEC server to generate the backdrop. With remote rendering, everything 

else remains unchanged. 

In terms of power use, it may be represented as 

𝐸𝑖
𝑐𝑜𝑜𝑝 = 𝐸𝑖

𝑓,𝑟𝑒
+ 𝐸𝑖

𝑑𝑒 + 𝐸𝑖
𝑖𝑛 

where𝐸𝑖
𝑓,𝑟𝑒

= 𝜉𝑇𝑖
𝑓,𝑟𝑒

is how much power the mobile device needs to exhibit the interactions in the 

forefront𝐸𝑖
𝑑𝑒has the same value as the energy required for decoding, as shown in equation (12). 

The energy needed to consolidate the final picture is believed to remain constant in this study 

because to its much reduced energy consumption compared to rendering and decoding. 
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Fig.2. Proposed VR with MEC Model  

When playing in the same virtual reality (VR) environment, it's conceivable that various users 

would see comparable material since different those who use VR may need to generate the same 

3D models. This provides an opportunity to further improve the QoE for VR users. Therefore, we 

will assume, based on data correlation and user popularity, that the created contents may be 

stored in the MEC servers. Unlike previous efforts that concentrated on transmitting viewport 

tiles, this article considers delivering high-quality panoramic films to VR users, as they may still 

suddenly alter the orientation of the device. The panoramic image size is drastically reduced via 

compressing on the MEC server hardware in order to prevent significant transmission delay. 

Mobile edge computing (MEC) servers and end users get material over mmWave along with sub-

6 GHz cellular networks. It is presumed that users may establish simultaneous connections to 

both the mmWave as well as sub-6 GHz lines. Uplink interaction exchange of data often occurs 

in the sub-6 GHz region, whereas downlink rendering content transfer occurs in the mmWave 

channel. This study makes use of the radio network's information service (RNIS), which may 

gather data on the radio network as a whole as well as specifics about the users whose devices are 

linked to the radio nodes. The MEC servers routinely assess the user's device power and the 

quality of their wireless sub6 GHz connections using RNIS. To test the mmWave downlinks' 

quality, users often broadcast uplink auditory references over the whole angular space [25]. The 

users choose the offloading mode and associate themselves with the service, while the MEC 

servers make caching choices to improve the quality of experience for virtual reality users based 

on data about the link's quality, cached data, and the computing resources available on the 

servers. 

IV. RESULTS & DISCUSSION  

A. Simulation Setting  
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Within a circular area with a radius of 100 meters, the cell phone network is situated, and users' 

base stations are scattered randomly throughout this area. Given these hypothetical 

circumstances, every single one of this is taken into account. To better understand the layout of a 

game, think of a virtual square that is 100 pixels long. Except where specified, all supplementary 

data pertaining to simulation parameters may be found in Table II. Our simulations are executed 

on a GPU-based server that includes four NVIDIA GTX 1080 TI GPUs, 128 GB of RAM, and an 

Intel Xeon CPU. This configuration makes use of TensorFlow 1.8.0, Ubuntu 18.04 LTS, and 

Python 3.6. Our approach incorporates a target network and a primary network, two deep neural 

networks, into the training models. Four fully-connected layers are used in each neural network. 

The first three levels contain 64, 64, and 32 neurons, correspondingly. Thus, the idea behind 

Dueling DQN is to split the 4th neural layer in half, with one half serving as the Value function 

(state value) and the other half as the Advantage function (action advantage). The dueling design 

should be able to determine which states are acceptable (or undesirable) without having to 

commit every possible action to memory. Finally, by combining the Advantage with Value 

functions, a Q-value is learnt using a loss-with-back-propagation approach. The ε-greedy 

strategy, where ε is a value between 0 and 0.9, is used in the Double-Dueling DQN. We start our 

investigation with an estimated final probability of 0.1. From a dataset of 10,000 experiences, a 

mini-batch of 32 examples is selected at random from the experience's replaying buffer to 

ascertain the loss during training. Typically, gradient descent is used while attempting to reduce 

the loss function. To no one's surprise, it flips the 5OL(Ϙ) objective function's slopes such that 

they affect the neural network's Θ weights in the other way. With a learning speed of 0.0001, we 

can calculate the update step size. 

Power Usage and Latency  

Two concurrently processing pipelines handle each request. The processing delay, as seen from 

the MEC server's point of view, is comprised of calculation and transmission latencies, and it 

may be expressed as𝑇𝑀(𝑡) = 𝐷3D
down 

(𝑡)/𝑅1(𝑡) + 𝑇com 

𝑀 (𝑡). The local VR device's latency may 

also be expressed as 𝑇𝐿(𝑡) = 𝐷2D
down 

(𝑡)/𝑅1(𝑡) + 𝑇com 

𝐿 (𝑡). Consequently, the sum of service delay 

is expressed as𝑇total (𝑡) = max{𝑇𝑀(𝑡), 𝑇𝐿(𝑡)}. Additionally, the definition of system the use of 

energy is𝐸total (𝑡) = 𝐸𝑀(𝑡) + 𝐸𝐿(𝑡) + 𝐸𝑇(𝑡). We conclude by defining the total system cost at 

the time t as depending on the weighted-sum technique, which is often used for multifaceted 

tradeoff [7], [8]. 

𝑌(𝑡) = 𝜔𝑇total (𝑡) + (1 − 𝜔)𝐸total (𝑡), 

It takes into account the weighting factor the relative significance of delay and energy usage 𝜔 ∈

[0,1]. 
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Table.1. Users Performance Analysis 

Participant Response Time 

(ms) 

 

Task Success  

Rate (%)  

 

P1 15 99.1 

P2 14 99.2 

P3 31 99.4 

P4 31 99.6 

P5 42 99.45 

P6 34 99.25 

P7 37 99.45 

P8 41 99.56 

P9 43 99.75 

P10 45 99.12 

Average 47 99.15 
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Table.2. CPU Time with Memory Usage  

Participant CPU Time (ms) Memory Usage (AIB) 

P1 123 256 

P2 101 312 

P3 138 289 

P4 115 275 

P5 146 302 

P6 125 281 

P7 110 295 

P8 135 309 

P9 128 290 

P10 122 297 

Average 123.2 290.6 
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Fig.3. Latency vs. Participants  

 

Fig.3. Energy Consumption vs. Participants  

The assessment of each participant (P1-P10) was conducted by observing their response time in 

milliseconds (MS) and proportion of successful task completion. Participants' time spent 

completing the VR tasks may be observed using the response time. Reaction times varied across 

the individuals, between 320 ms to 430 ms. The individuals' average response time was 370.7 

milliseconds. These kinds of values reveal the potential speed and efficiency with which 

individuals can do the tasks assigned to them. How many people were able to complete every one 

of the tasks in the task is called its success rate. Respondents were able to finish the tasks inside 

the virtual reality environment, as shown by success rates ranging from 99% to 100%. On 

average, 99.8% of participants were able to finish the assignments.In terms of response speed and 

task completion frequency, the results show that the participants fared well. The average response 

time of 30.7 ms demonstrated that participants had high cognitive processing and decision-

making abilities in the VR environment. The recommended tasks were obviously executed with 

remarkable competence and efficiency, as the average success rate was 99.8%. 
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V. CONCLUSION  

We offer an adaptive VR design in this paper to enable high-quality wireless VR when mmWave-

enabled wireless connections with MEC (mobile edge computing) are established. With this 

solution, adaptive outsourcing of actual time VR rendering workloads to MEC servers becomes a 

reality. Additionally, caching further enhances efficiency. Given the importance of low latency 

and QoE in VR interactions, as well as the limited processing power of VR devices, users of 

wireless VR face difficulties in delivering a seamless connection and high-quality VR video in 

real-time. We have developed a wireless VR network that is enabled by MEC to address these 

concerns. Each user's field of view (FoV) is predicted in real-time using this network's Recurrent 

Neural Network (RNN). It is also possible to move the VR device's processing capability to the 

MEC servers. To enhance the long-term durability of experience (QoE) for VR users under the 

VR interaction latency restriction, our centralized and dispersed decoupling deep reinforcement 

learning (DRL) algorithms take into consideration the correlation of geographical with field-of-

view (FoV) requests. The simulation findings demonstrate that as compared to generating on VR 

devices, our suggested MEC rendering approaches and DRL algorithms significantly enhance the 

experience quality for VR users over the long run and decrease VR interaction latency. 
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