

Enhancing Software Vulnerability Prediction Models

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

10

Enhancing Software Vulnerability Prediction Models

Santosh Kumar Kande

https://orcid.org/0009-0000-9086-2015

Accepted: 18th Aug, 2024, Received in Revised Form: 26th Aug, 2024, Published: 18th Sep, 2024

Abstract:

Purpose: The purpose of this study is to evaluate and replicate various Vulnerability Prediction

Models (VPMs) to determine their effectiveness in identifying software vulnerabilities. Given the

increasing complexity of software, identifying vulnerabilities during development is becoming

more challenging. This study aims to enhance the accuracy of vulnerability prediction to improve

security inspections and testing.

Methodology: The study involves benchmarking different VPM approaches, including software

metrics, text mining, and automated static analysis. These models are evaluated using a dataset

that consists of over 100,000 lines of code from multiple open-source projects. The evaluation

focuses on assessing the models in terms of precision, recall, and F-Measure.

Findings: The findings indicate that combining multiple VPM techniques results in improved

prediction accuracy. The study demonstrates that integrating various approaches enhances the

overall effectiveness of vulnerability detection in software development.

Unique Contribution to Theory, Practice, and Policy (Recommendations): The unique

contribution of this study lies in its demonstration that a multi-technique approach to VPMs can

significantly enhance prediction accuracy. This finding offers valuable insights for both theoretical

advancements and practical applications in software security. For practice, it suggests that

incorporating a combination of VPM techniques can lead to more effective vulnerability detection.

For policy, it underscores the importance of adopting advanced and varied VPM methods to

improve software security measures. Future research should focus on expanding datasets to include

a broader range of projects and incorporating machine learning techniques to further enhance VPM

predictive capabilities.

Keywords: Vulnerability, Software Engineering, Prediction Models, Metrics, Security, Software,

Open Source, VPM, Precision, Recall, Accuracy, Benchmark.

https://doi.org/10.47941/ijce.2258
https://orcid.org/0009-0000-9086-2015
https://orcid.org/0009-0000-9086-2015

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

11

1 INTRODUCTION

A product weakness is a shortcoming in a product framework that an assailant can exploit to change

its way of behaving [1]. As the number of programming frameworks increases daily, so does the

number of weaknesses. An assailant can utilize weaknesses to get to the framework, and he could

take control to harm it, by sending off new assaults or acquiring some favored data that he can use

for their advantage. Considering this, it means quite a bit to know the various sorts of weaknesses,

their counteraction, and their location to attempt to keep away from their presence in the last

programming rendition of the framework and afterward decrease the chance of assaults and

expensive harms. Finding this sort of issue can be valuable for assessing and examining the source

code parts more completely. A manual source code review requires human exertion in terms of

parts/time because tracking down such weaknesses can be troublesome [1].

Weakness expectation models (VPM) are accepted to guarantee that they give computer

programmers direction on where to focus on valuable confirmation assets to look for weaknesses

[3]. There are various kinds of VPMs, each with various ways of getting source code data to

assemble VPMs that cover various parts of programming. Finding them grants finding the primary

highlights to perceive in the event that a part is defenseless or not. In this review, I have recreated

the VPMs made by Shin et al. [6] for programming measurements, Scandariato et al. [7] for text

mining, and Gegick et al. [2] for the Computerized Static Examination Code (ASA) with a dataset

that remembers a few open-source projects for request to test the VPMs with the heterogeneity of

the information. Every methodology can be joined between them to develop the procedure’s

accuracy further.

With this, I propose the following Research questions:

• RQ1: Which are the best VPM analyzed?

• RQ2: Which classifier obtains a higher error rate and which one a higher accuracy rate?

• RQ3: Is it possible to combine different VPMs? In respect of the state-of-art, are they more

effective?

The goal of the study is to build upon the contributions of previous research by creating and

refining the replication of state-of-the-art Vulnerability Prediction Models (VPMs). The study aims

to compare these models to better understand the effectiveness of the replications in discovering

vulnerabilities.

The rest of the paper is organized as follows: Section 2 discusses background and related work,

Section 3 describes the implementation for each VPM, Section 4 shows the obtained results, and

Section 5 describes limitations and future works.

2 Related Work

In this part, the researcher portrays the connected work to my comparison.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

12

A weakness is a mistake in the particular improvement or design of programming that permits the

security strategy (verifiable or unequivocal) remembered for an organization’s all’s product to

disregard its execution [6][10]. A shortcoming of the framework permits an outside aggressor to

lessen the security of data in the framework. An adventure means to exploit something for one’s

end, particularly deceptively or ridiculously. An endeavor is a piece of programming that exploits

a bug or weakness to make the accidental way of behaving happen on PC programming or

equipment. Each weakness has a lifecycle as follows:

1. Discovery: when a vulnerability is discovered by a seller, a hacker or others.

2. Disclosure: the vulnerability is publicly disclosed; that is, everyone will be informed about

the vulnerability.

3. Exploitation: an external attacker is capable of using the vulnerability to cause problems.

4. Patching: when a vendor resolves the vulnerability.

Normal Weaknesses and Openness (CVE) is the true standard word reference that gives definitions

to freely unveiled online protection weaknesses and openings. Presently, the Miter Company keeps

up with CVE: this is a philanthropic association that works innovative work habitats subsidized

by all significant US bureaucratic governments. CVE expects to normalize the names of all freely

known weaknesses and security openings. The objective of CVE is to make it simpler to share

information across discrete weak data sets and security tools. Specialists have utilized

programming properties to foresee weak code inside programming projects. Theisen et al. [3]

performed VPM replication on Mozilla Firefox with 28,750 source code records, including 271

weaknesses utilizing programming measurements, text mining, and crash information. Making a

blend of elements from each VPM lastly obtain results from the classifiers reruns.

Zimmermann et al. [1] fostered a weak expectation model for Windows Vista in view of customary

computer programmers’ measurements, for example, code stir and the number of designers.

Gegick et al.[2] fabricated a forecast model utilizing the consequences of the Mechanized Static

Investigation instrument ”Flexelint” and found that, related at specific programming

measurements, it tends to be utilized to foresee powerless components.

Scandariato et al.[7] introduced a VPM in light of AI utilizing the text mining approach, so

dissecting straightforwardly the source code rather than programming or designer measurements.

They utilized an exploratory approval of 20 Android applications and found that the text mining

approach could get an expectation power that is equivalent or better in connection than other

techniques. Shin et al. [6] investigated whether issue expectation frameworks could be adjusted

for weakness forecast and found that shortcoming expectation performs in basically the same

manner to specific weakness indicators. Papadakis et al. [8] directed an examination in view of the

replication and correlation of three VPMs with regards to Linux Piece: import and capability calls,

programming measurements, and text mining. They found that text mining is the best method while

focusing on arbitrary occurrences.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

13

3 Vulnerability Prediction Models

In this segment, the researcher depicts the three VPMs that the researcher will analyze in this study.

3.1 Software Measurements – Stir and Complexity

Shin et al. [6] use stir and intricacy highlights to find parts inside the venture’s codebase that are

probably going to be helpless. Shin et al. had the option to decrease how much code was reviewed

for security exertion by 71% for Mozilla Firefox; they report 12% accuracy and 83% review

utilizing comparable measurements. Shin et al. investigated execution intricacy measurements

versus static intricacy measurements and found that execution intricacy measurements beat their

partner for Mozilla Firefox and Wireshark concerning Record Assessment Decrease [].

3.2 Text Mining

Scandariato et al. [7] beginning from some Java documents that incorporate remarks (in-line

remarks and block remarks). Every Java record is tokenized into a vector of terms, likewise called”

monograms”, and the recurrence of each term in the document is counted. The frequencies are not

standardized to the length of the document because of conceivable disintegration of execution. The

routine utilized for the tokenization utilizes a bunch of delimiters that incorporate blank area, Java

accentuation characters, and both numerical rationale administrators. Scandariato and Walden [7]

[9] contrasted text mining and programming measurement ways to deal with weakness

expectation. They found that text mining tokens brought about better accuracy and review for

weakness expectations for three undertakings: Drupal, PHPmy Administrator, and Moodle. Later

investigations on text mining utilized creator-approved weakness set [9]. Moreover, text mining

gets some margin to run and has a huge plate space prerequisite. The time taken to tokenize code

into highlights is of worry, as it implies that a text mining way to deal with weakness forecast

would be contrary with a consistent sending work process.

3.3 Automated Static Analysis

Gegick et al. [2] used Automated Static analysis(ASA) tool results as one of the metrics. A static

analysis tool is used to analyze the software code to find defects without executing the code. The

output of an ASA tool is an alert, a notification of a potential fault identified in the source code.

This technique provides an early, automated, and repeatable analysis to detect faults, but it also

provides a high false positive alert. Gegick discovered that ASA results have no resolution in

determining if a component is vulnerable, but combined with other techniques, it can provide better

results.

4 Dataset

In this section, the researcher discusses the dataset for this experiment.

Sabetta et al. [10] created a dataset of vulnerabilities of open-source software, collecting the

vulnerabilities from the National Vulnerability Database (NVD) and from the project’s Web

resources that the authors monitored on a continuous basis. The dataset consists of a set of 4-tuples:

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

14

 (vulnerability_id, repositopry_id, commit_hash, class)

• vulnerability id: is the identifier of a vulnerability that is fixed in the commit.

• repository url: URL of the repository

• commit hash: hash value that identifies the commit.

• class: this value establishes if a commit fixes a vulnerability (has ”pos” value) or it’s likely

not vulnerable (has ”neg”).

The dataset covers 205 distinct Java projects and includes 1282 unique commits corresponding to

the fixes to 624 vulnerabilities. In addition, this dataset is different from other ones. Sabetta et al.

include vulnerabilities that are not available on the NVD database in the dataset. There are 29

commits with no CVE identifier and 46 vulnerabilities that have been given a CVE identifier by a

CVE numbering authority but are not yet published on NVD.

5 Methodology

In this section, the researcher describes the methodology for the replication and the comparison of

VPM.

5.1 Mining Software Repository

For the extraction of the components containing vulnerability from the dataset, I used Pydriller

[11] [12] to obtain information regarding the repositories contained in the dataset.

The dataset given by Sabetta et al. [10] contains a hash value that identifies the commit_fix, and it

permits us to reach the modified classes considering the BFIM (before image) and the classes that

are introduced in that commit. In MSR theory, the BFIM is defined as the instant in which a file is

modified or created before the commit fix. Therefore, I used the above image to obtain the instance

containing the vulnerability. My data extraction processing considers only Java projects because

this filter is already done in the dataset’s context. After that, I collected and organized in specific

folders the several repositories and their commits.

However, there have been some problems with using pydrillers, including incomplete hash

commits, a non-existent repository URL, and memory overhead during the MSR phase. The

incomplete hash was handled manually, verifying the existence of the repository via web browser

- since the latter requires a minimum number of hash commit characters to perform the search,

instead PyDriller requires the whole commit and looking for the commit hash in the history commit

of the repository to which it corresponded partially and then modify it. The problem with the non-

existence of the project repository and therefore its commit hash was handled using the git APIs.

In addition, a log file was created that tracks all non-existent repositories. Finally, the overhead

problem derives directly from PyDriller. The latter, during the MSR, copied the entire repository

contained in the dataset (except for the non- existent ones) to a local workspace, causing a filling

of the hard disk memory space without consequent emptying. The problem was handled by

opening an issue on the PyDriller repository and notifying the problem.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

15

5.2 Software Metrics Extraction

The process of software metrics extraction for each java file is done through Understand. In line

with the experiment done by Theisen et al., [3], I have collected 9 metrics, as shown in Table 1.

These metrics are initially collected for each component of the projects, in different granularities.

Morrison et al. [5] performed a replication of VPMs on two granularity levels: binary level and

file level. The results of this experiment showed that the prediction at the source level is actionable.

Therefore, from all the instances of metrics of granularities extracted by the Understand tool, I

selected the file-level granularities.

 Table 1. Software metrics used for my replication

Name Description Understand Name

CountLineCode Number of lines containing source code.

[aka LOC]

CountLineCode

CountDeclClass Number of declared classes in the source

code file.

CountDeclClass

CountDeclFunction Number of declared functions in the

source

code file.

CountDeclFunction

CountLineCodeDec

l

Number of lines containing

declarative

source code.

CountLineCodeDec

l

SumEssential Sum of essential complexity of all nested

functions or methods.

SumEssential

SumCyclomaticStri

ct

Sum of strict cyclomatic complexity of

all

nested functions or methods.

SumCyclomaticStri

ct

MaxEssential Max of essential complexity of all nested

functions or methods.

MaxEssential

MaxCyclomaticStri

ct

Maximum strict cyclomatic complexity

of

nested functions or methods.

MaxCyclomaticStri

ct

MaxNesting Maximum nesting level of control

constructs.

MaxNesting

5.3 Text Mining

The realization of Text mining gave a first approach that respects the state-of-the-art criteria, as

described in Section ref sec: Section2. The aim is to work with Java classes and to tokenize words

in ”monogram” sets, where each monogram will have an associated counter that refers to the

number of occurrences found. Below an example of a Java class:

Public class Example(){

/* I’m a

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

16

block comment

*/

 Public void doRetrieve () {

//in-line comment

System.out.println(“Hello Guys”);

 }

}

Before tokenizing, it is necessary to remove in-line comments and block comments, all logical

operators, and any constants. After tokenization, a result turns out to be as follows:

{public: 2, class: 1, void: 1, Example: 1, retrieve: 1, System: 1, out: 1, println:1}

Using a dataset with different projects, this type of execution leads to the construction of a

dictionary with a huge quantity of words, increasing the execution times and taking up a lot of disk

space. So, I got the strengths of this first approach and thought of applying it in a different way,

which makes execution times fast and takes up less disk space. Both quantities are, therefore,

directly proportional. I used a standard normalization process that aims to carry out further ”pre-

processing” phases before tokenization:

1. Split CamelCase

2. Lower case reduction

3. Removing special chars and programming keywords

These further steps have been applied to the file obtained from the execution of the first approach,

obtaining significant improvements in terms of execution speed (less than a minute for all

repositories) and disk space. The approach described by Scandariato et al. Cite Scandariato created

a file of approximately 1.20GB, and with approximately 254,500 different words. By applying my

pre-processing phases, I reduced the file by 90%, obtaining a file size of about 125MB with 13.780

different words. This makes us think that the three phases of ”text normalization” are fundamental

for finding more occurrences of the same words.

5.4 Automated Static Analysis (ASA) Extraction

SonarQube collects ASA alerts. To export the results of the static analysis, I installed the plugin”

CNESREPORT”. Initially, SonarQube’s report contained information about all alert types: code

smells, security hotspots, bugs, and vulnerabilities. Due to the number of these types, I created a

new quality profile to execute an analysis based only on vulnerability alerts. Therefore, I performed

the analysis on the 39 rules available by the tool (excluding the deprecated rules). From these rules,

I studied the results to understand which rules are essential to identify the vulnerability of my

dataset, looking for the rules that aren’t violated in all Java files of my dataset, and then I excluded

them. The analysis results showed that 19 types of vulnerability are present in several projects of

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

17

the dataset. I have created a new dataset that contains the number of vulnerabilities of that rule for

each file analyzed. Let’s define S as the set of files and R as the set of vulnerability. I define M [i,

j] with i ⊂ S and j ⊂ R in which N is number of vulnerabilities per class:

M[i, j] = {
𝑁, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑎𝑟𝑒 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑟𝑢𝑙𝑒 𝑗 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑖.

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

The resulting dataset presents 1251 files that violate the 19 rules considered.

5.5 Modelling

To execute the classification with these models, I used Weka. In line with the VPMs presented in

the previous experiments, I used the following classifiers:

• Logistic Regression

• Support Vector Machine (SVM)

• Naive Bayes

• Random Forest

The selection of these Machine Learning Algorithms for the classification is due to the goal of

obtaining a benchmark of the VPMs replication in the state-of-the-art, highlighting the best

algorithm in terms of performance and considering the measurements defined in 5.7

For each selected model, I performed a k-fold cross-validation, using part of the dataset to fit the

model and the other part to test it. In my replication, I use five-fold cross-validation, which has

five components: one for the test set and one for the training. In relation to the dataset, five has

shown to be a good value for the number of folds of cross-validation.??

5.6 Combination of the features

I have created different combinations of techniques; each one will be evaluated with the classifiers

specified in 5.5. Referring to the combinatorial calculation, I define as 𝑃𝑛 the number of

permutations without repetitions, on the replicated techniques of n. 𝑃𝑛 = n! = 6 different

permutation techniques in which the single techniques described in the Section 5 are also

considered, which are:

• Software Metrics (SM)

• Text Mining (TM)

• Automated Static Analysis (ASA)

• Software Metrics and Text Mining

• Text Mining and Automated Static Analysis

• Software Metrics and Automated Static Analysis

Given the heterogeneity of the datasets deriving from the individual techniques for the number of

tuples and for the type of attributes, it was necessary to make an ad-hoc association by creating a

unique id for each instance in the dataset, formed by ”commit hash/filename.java”.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

18

Subsequently it was possible to create a dynamic combination in the following way:

Define D1 (with 𝑎1, 𝑎2, 𝑎𝑛 the set of attributes in 𝐷1) and 𝐷2 (with 𝑏1, 𝑏2, 𝑏𝑛the set of attributes

in 𝐷2) two datasets of two techniques studied. The combination of the two techniques will be

determined by D where each d[i] ∈ D is defined:

d[i] = {𝑑1[i], 𝑑2[i]}

where 𝑑1[i] is the tuple of 𝐷1with id i and 𝑑2[i] is the tuple of D2 with id i.

5.7 VPM Comparison

After the replication of each single methodology explained in Subsection 5.2, Subsection 5.3,

Subsection 5.4 I have considered the possibility of making com- parisons, so as to verify which

technique it was less performing with different types of classifiers and if the combination of

multiple techniques could provide better results than the single ones. Each technique was evaluated

with the following measurements regarding the performance of the classification:

• Precision: Represents the probability that the VPM’s declaration of vulnerable code is

accurate. It is a function of the True Positive (TP) rate and False Positive (FP) rate of

vulnerable source code files. Precision is calculated as:

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

• Recall: Represents the probability that the VPM will find a source code file that contains

at least one vulnerability. It is a function of the True Positive (TP) and True Negative (TN)

rate of vulnerable source code files. Recall is calculated as:

Recall =
𝑇𝑃

𝑇𝑃+𝑇𝑁

• F-Score: Represents the geometric mean of precision and recall. Higher indicates better

overall accuracy, assuming that precision and recall are weighted equally. F-Score is

calculated as:

𝐹1 = (
𝑟𝑒𝑐𝑎𝑙𝑙−1+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1

2
)−1

These actions, taken together, address the precision and execution of each VPM in my review. I

present these actions independently, so the qualities of each model are still up in the air in lieu of

a solitary precision figure. For instance, one model might have a high review but low accuracy,

showing a high bogus positive rate. Another model might have high accuracy; however, it is poorly

demonstrated that the model seldom gives misleading up-sides yet misses numerous weaknesses.

6 Results

In this section, I present the results of my case study on vulnerability prediction models run against

the dataset explained in Section 4.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

19

I have used W eka in order to evaluate my VPM with different classifier.

6.1 VPM Comparison

RQ1: Which are the best models analyzed?

Table 2: Median precision, recall and F1 scire for each vulnerability prediction model, using

Random Forest classifier.

VPMs Precision Recall F1

Software Metrics 0,606 0,620 0,603

Text Mining 0,776 0,766 0,754

ASA Results 0,562 0,596 0,561

SM + TM 0,763 0,755 0,742

SM + ASA 0,620 0,632 0,615

TM + ASA 0,776 0,766 0,755

All 0,783 0,772 0,761

Table 3: Median precision, recall and F1 score for each vulnerability prediction model using

native-Bayes classifier.

VPMs Precision Recall F1

Software Metrics 0,548 0,490 0,479

Text Mining 0,653 0,626 0,630

ASA Results 0,544 0,604 0,525

SM + TM 0,665 0,640 0,643

SM + ASA 0,552 0,544 0,547

TM + ASA 0,656 0,628 0,631

All 0,654 0,631 0,634

Studying the results of the single techniques present, I note that in Table 2, the VPMs use a

classifier Random Forest. Analyzing the VPMs with this classifier, I note that the Software Metric

(calculated with Understand) and Text

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

20

Table 4: Median precision, recall and F1 score for each vulnerability prediction model, using

Simple Logistic classifier.

VPMs Precision Recall F1

Software Metrics 0,543 0,598 0,453

Text Mining 0,720 0,709 0,685

ASA Results 0,570 0,620 0,505

SM + TM 0,711 0,701 0,674

SM + ASA 0,566 0,598 0,472

TM + ASA 0,732 0,725 0,709

All 0,727 0,72 0,702

Table 5: Median precision, recall and F1 score for each vulnerability prediction model, using

Support Vector Machine classifier.

VPMs Precision Recall F1

Software Metrics 0,530 0,531 0,531

Text Mining 0,746 0,749 0,745

ASA Results 0,439 0,617 0,475

SM + TM 0,757 0,760 0,757

SM + ASA 0,559 0,597 0,467

TM + ASA 0,757 0,759 0,755

All 0,751 0,754 0,751

Mining (with normalization process) show an increase in precision, recall and F-Score compared

to those in [3]:

Software Metrics:

• Precision: da 0.45 a 0.60

• Recall: da 0.05 a 0.62

• F-Score: da 0.09 a 0.60

• Precision: da 0.47 a 0.77

• Recall: da 0.05 a 0.76

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

21

• F-Score: da 0.09 a 0.60

The obtained results by the ASA are not comparable with the state of the art, as

the experiments are based on a different application domain, based on the Recursive

Partitioning classifier and on a set of homogeneous data, creating a total difference

in the context of the experiment. Despite this, my results could be acceptable:

Automated Static Analysis:

• Precision: 0,57

• Recall: 0,62

• F-Score: 0,50

The results in the previous tables show a significant increase in terms of precision, recall and

f-score for each classifier analyzed for the text mining technique compared to software metrics

and ASA.

I can, therefore, believe that among single VPMs, the technique of text mining in a context

with heterogeneous data leads to better results than those described in the state of the art. I

also believe it is important to apply the text mining normalization process also to a non-

heterogeneous application domain, in order to assert its strengths with certainty.

6.1 VPM Accuracy rate and Error rate

RQ2: Which classifier obtains a higher error rate, and which one has a higher

accuracy rate?

For this research question it is necessary to consider the Accuracy rate and Error rate,

using the formulas:

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Which indicates the accuracy of the model used. The best accuracy assumes a value of 1, while

the worst is 0.

 Error =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 o Error = 1 – Accuracy

which is calculated as the number of all incorrect predictions, divided by the total number of the

data set. On the opposite here, the closer you get to 0, the lower the margin of error committed by

the classifier, the closer you get to 1 the greater the margin of error.

Referring to Table 6, I calculated the accuracy for each VPM with the respective classifiers, then

I calculated an average of accuracy for each classifier, in order to establish the lowest performing

one:

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

22

1. Random Forest: 0,718

2. Support Vector Machine: 0,690

3. Logistic Regression: 0,674

4. Naive-Bayes: 0,592

Therefore, I identify that the Random Forest obtains a higher accuracy value, while the Naive-

Bayes the lowest.

6.3 VPM Combination

RQ3: Is it possible to combine different VPMs? In respect of the state-of-art, are they more

effective?

Table 6: Accuracy for each vulnerability prediction model and classifier.

VPMs RF NB LR SVM

Software Metrics 0,619 0,490 0,598 0,531

Text Mining 0,766 0,626 0,709 0,748

ASA Results 0,595 0,603 0,619 0,617

SM + TM 0,754 0,639 0,700 0,759

SM + ASA 0,632 0,543 0,597 0,596

TM + ASA 0,766 0,627 0,725 0,758

All 0,772 0,630 0,719 0,753

The text mining technique return good results regardless the type of the classifier, in fact the

implementations of the VPMs combined with the text mining affects positively on the obtained

data, compared to other combined VPMs with- out text mining. Note, in fact, that for each classifier

the combined techniques with the text mining get better results than this single technique.

Moreover, the results in the previous tables show that it’s not always possible to obtain

improvements from combining the VPMs, but even in some cases, the addition of features can

decrease the model’s performance. I consider it important to study the single techniques in order

to choose accurately the types of combi- nations. Therefore, it turns out possible to combine the

VPMs to improve the performance of a model, and, even if it’s not possible to retrieve in the state-

of-the-art all combinations, I consider that the combination of the Text Mining and Software

Metrics obtains better results than those in [3], having an increase of Precision, Recall and F-Score

with all the described classifiers. With these results, I can say that my models are not only more

precise (Precision of 0.76), but even more sensitive (Recall of 0.76).

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

23

7 Conclusion and Future Works

In this paper, the researcher presents the replications of the vulnerability prediction models in state-

of-the-art settings.

These replications are performed on a cross-project dataset, which contains several types of

vulnerabilities for each project. Moreover, every single project in this dataset is open-source. The

approaches presented from the replications analyze the source code through text mining, the

software metrics and the alerts of the automated static analysis.

The results of this study show that text mining is the best technique for predicting vulnerable

components e in general every single technique perform better results than those of the state-of-

the-art. Subsequently these techniques were combined with each other in order to try to increase

the predictive power of the VPM. Nevertheless, while combining the techniquesA and obtaining

better results than the state-of-the-art. The researcher have noticed that the deviation of prediction

from text mining is minimal. This points out that the techniques combined with text mining

contribute very little to improving predictions. As a counterproof, the researcher studied the data

obtained from the combination that does not use text mining (Software Metrics and Automated

Static Analysis), obtaining lower results in some cases.

In the future, the researcher have planned to work on the development of a general framework for

the use of VPM, in which there will be an evaluation and prediction phase, where in the evaluation

phase an evaluation of the learning schemes will be obtained and the best. Later in the predicting

phase the best learning scheme is used to create a predictor with all historical data and use the

latter as a component to predict the vulnerabilities on new data. The first phase of the future general

framework relating to evaluation is proposed in this research work. As another future development,

a re-engineering process can be provided that allows the use of methodologies as a fundamental

tool for predicting vulnerabilities.

In the end, the researcher have planned to perform an information gain technique in order to

discover the “amount” of information of the presented VPMs attributes. This technique can be

useful for a better understanding of the prediction power of the VPMs.

References

1. Zimmermann, T., Nagappan, N., and Williams, L. Searching for a Needle in a Haystack:

Predicting Security Vulnerabilities for Windows Vista. In Software Testing, Verification

and Validation (ICST), 2010 Third International Conference on (2010)

2. M. Gegick, P. Rotella, and L. Williams, “Predicting Attack-prone Components,” in

ICST’09.

3. C.Theisen, L.Williams, ”Better together: Comparing vulnerability prediction models”,

North Carolina USA, 2019

4. T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning, New

York, Springer, 2001.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 6, Issue No. 5, pp. 10 - 24, 2024 www.carijournals.org

24

5. P. Morrison, K. Herzig, B. Murphy, L. Williams, “Challenges with Applying Vulnerability

Prediction Models”.

6. Y.Shin, A. Meneely, L.Williams, J.A Osborne, ”Evaluating complexity, code churn, and

developer activity metrics as indicators of software vulnerabilities, IEEE Trans. Softw.

Eng. 37 (6) (2011) 772-787.

7. R.Scandariato, J.Walden, A.Hovsepyan, W.Joose, ”Predicting vulnerable software

components via text mining”, IEEE Trans.Softw Eng. 40 (10)(2014) 993-1006.

8. M. Jimenez, M. Papadakis, Y. Le Traon, “Vulnerability Prediction Models: A case study on

the Linux Kernel”, 16th IEEE International Working Conference on Source Code Analysis

and Manipulation (SCAM), 2016.

9. Y. Shin, L. Williams, An initial study on the use of execution complexity metrics as

indicators of software vulnerabilities, in: Proceedings of the 7th International Workshop on

Software Engineering for Secure Systems, SESS ’11, ACM, New York, NY, USA, 2011,

pp. 1–7, doi:10.1145/1988630.1988632

10. J. Walden, J. Stuckman, R. Scandariato, Predicting vulnerable components: soft- ware

metrics vs text mining, in: Software Reliability Engineering (ISSRE), 2014 IEEE 25th

International Symposium on, IEEE, 2014, pp. 23–33.

11. S.E. Ponta and H. Plate and A. Sabetta, M. Bezzi , C. Dangremont,”A Manually Curated

Dataset of Fixes to Vulnerabilities of Open-Source Software”,Proceedings of the 16th

International Conference on Mining Software Repositories

12. D.Spadini, M.Aniche, A.Bacchelli, ”PyDriller: Python Framework for Mining Soft- ware

Repositories”,26th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE’18)

13. https://github.com/ishepard/pydriller

©2024 by the Authors. This Article is an open access article distributed

under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/)

https://github.com/ishepard/pydriller

