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Abstract 

This review paper explores the current state, recent advancements, challenges, and future 

perspectives of AI-driven approaches for route planning and scheduling of Electric School 

Buses (ESBs). The integration of artificial intelligence into energy management systems for 

electric vehicles has gained significant attention, particularly in optimizing school 

transportation. This study examines various AI techniques, including genetic algorithms, 

reinforcement learning, and game-theoretic approaches, applied to ESB management. Key 

focus areas include energy consumption estimation, battery capacity optimization, and 

Vehicle-to-Grid (V2G) strategies. The paper also addresses critical challenges such as data 

integration, security concerns, and operational constraints. Future perspectives highlight the 

potential of advanced AI techniques, smart grid integration, and personalized transportation 

solutions. By synthesizing current research and identifying key areas for future development, 

this review contributes to ongoing efforts to improve the efficiency, sustainability, and overall 

quality of school transportation systems through AI technologies. 

Keywords: Artificial Intelligence, Electric School Buses, Energy Management, Vehicle-to-
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1. Introduction 

The integration of artificial intelligence (AI) into energy management systems for electric 

vehicles has garnered significant attention recently, particularly in optimizing route planning 

and scheduling for electric school buses (ESBs). This review paper examines the current state, 

recent advancements, challenges, and future perspectives of AI-driven approaches for ESB 

management. 

ESBs offer numerous benefits, including reduced emissions, lower operating costs, and 

potential grid support through vehicle-to-grid (V2G) technologies. However, their adoption 

presents unique challenges in route planning and scheduling due to factors such as limited 

range, charging requirements, and the need to optimize energy consumption. 

AI has emerged as a powerful tool for addressing these complexities. AI-driven approaches 

can optimize route planning to minimize energy consumption and travel time, predict and 

manage energy needs based on various factors, coordinate charging schedules, and adapt to 

real-time changes in conditions or schedules. 

This paper aims to provide a comprehensive overview of AI techniques being applied in ESB 

management, analyze the challenges and considerations in implementing AI-driven systems, 

and explore future perspectives and emerging trends in the field. By synthesizing current 

research and identifying key areas for future development, this paper seeks to contribute to 

ongoing efforts to improve the efficiency and sustainability of school transportation systems 

through AI technologies. 

2. Background 

2.1. Electric School Buses 

Electric school buses (ESBs) have emerged as a promising solution to reduce greenhouse gas 

emissions in the transportation sector, offering significant environmental and operational 

benefits. Unlike passenger cars, ESBs exhibit more predictable usage patterns, making them 

ideal candidates for vehicle-to-grid (V2G) services and efficient energy management. 

The adoption of ESBs can lead to substantial reductions in greenhouse gas emissions and air 

pollution. A study found that BE transit and school buses with V2G application have the 

potential to reduce electricity generation-related greenhouse gas emissions by an average of 

1,420 tons of CO2 equivalence for school buses. This reduction not only contributes to 

combating climate change but also improves air quality in areas where buses operate 

frequently[1]. 

ESBs have a significant advantage over passenger electric vehicles due to their predictable 

usage patterns. School buses typically operate on fixed schedules, with long periods of 

inactivity during school hours and overnight.This predictability makes ESBs more practical for 

providing V2G services, especially when prompted by incentive price signals from grid or 

utility companies requesting peak shaving services[2].  
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The V2G capability of ESBs allows them to both charge and discharge energy to/from their 

battery storage, providing valuable services to the electrical grid[2]. This dual functionality 

enables ESBs to: 

2.1.1. Offer ancillary services to the grid during idle periods 

2.1.2. Contribute to peak shaving and load leveling 

2.1.3. Potentially generate additional revenue for school districts 

 ESBs can play a crucial role in energy management and grid support: 

2.1.4. Peak Shaving: ESBs can discharge stored energy during peak demand periods, 

helping to reduce strain on the grid and potentially lowering electricity costs. 

2.1.5. Load Leveling: By charging during off-peak hours and discharging during peak 

hours, ESBs can help balance electrical loads over specific periods, ensuring a more 

consistent and stable load profile. 

2.1.6. Renewable Energy Integration: ESBs can be charged using solar energy, providing 

a synergistic opportunity to reduce emissions while supplying inexpensive electricity 

to schools[3]. 

While the initial costs of ESBs are higher than traditional diesel buses, they offer long-term 

economic benefits: 

2.1.7. Reduced Operating Costs: Electric buses provide a 60% reduction in energy 

consumption compared to diesel counterparts[4]. 

2.1.8. V2G Revenue: ESBs can generate additional income by providing V2G services 

during idle periods[2]. 

2.1.9. Air Pollution Externalities: ESBs have the potential to eliminate an average of 

$18,300 in air pollution externalities[1]. 

 Despite their promise, the adoption of ESBs faces some challenges: 

2.1.10. Upfront Costs: The initial investment in ESBs and charging infrastructure is 

significant, requiring incentives and grants for widespread adoption[4]. 

2.1.11. Charging Infrastructure: Proper planning and implementation of charging stations 

are crucial for the successful operation of ESB fleets[3]. 

2.1.12. Battery Capacity: Adopting buses with larger battery capacity can lead to a smoother 

and more efficient transition towards electric school buses[4]. 
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2.2. The Need for AI-Driven Approaches 

The complexity of managing electric bus fleets, particularly in the context of school 

transportation, necessitates advanced AI-driven solutions. These approaches can address 

various challenges, including energy consumption estimation, route optimization, charging 

infrastructure planning, and fleet management.  

Accurate energy consumption estimation is crucial for optimizing bus scheduling and ensuring 

efficient route operations[5]. AI-driven approaches can significantly improve this process by: 

2.2.1. Handling Complex Variables: AI algorithms can process and analyze multiple 

factors affecting energy consumption, such as weather conditions, traffic patterns, 

and driving styles[5]. 

2.2.2. Real-World Data Integration: By utilizing real-world driving data, AI models can 

construct more accurate speed profiles for different driving styles, leading to better 

energy consumption estimates[5]. 

2.2.3. Adaptive Modeling: AI can continuously learn from new data, allowing for dynamic 

adjustments to energy consumption models as conditions change over time. 

2.2.4. Predictive Capabilities: Advanced AI algorithms can forecast energy needs based on 

historical data and current conditions, enabling proactive fleet management. 

 Route Optimization 

AI-driven route optimization is essential for maximizing the efficiency of electric school bus 

operations: 

2.2.5. Dynamic Routing: AI can analyze real-time traffic data, weather conditions, and 

other factors to suggest optimal routes that minimize energy consumption and travel 

time. 

2.2.6. Student Pickup Optimization: AI algorithms can determine the most efficient pickup 

and drop-off sequences, considering factors like student locations, bus capacity, and 

time constraints. 

2.2.7. Energy-Aware Routing: By integrating energy consumption estimates with route 

planning, AI can suggest routes that balance time efficiency with energy 

conservation. 

 Fleet Management 

AI-driven fleet management solutions can significantly enhance the efficiency and reliability 

of electric school bus operations: 

2.2.8. Real-Time Monitoring: AI systems can continuously monitor bus locations, battery 

status, and performance metrics, enabling quick responses to any issues. 

2.2.9. Predictive Maintenance: By analyzing vehicle data, AI can predict maintenance 

needs before they become critical, reducing downtime and extending vehicle 

lifespan. 
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2.2.10. V2G Integration: AI can optimize the use of electric school buses in V2G systems, 

maximizing the benefits of bidirectional energy flow during idle periods[6]. 

2.2.11. Demand Forecasting: AI algorithms can predict transportation demand based on 

historical data, school schedules, and other factors, allowing for more efficient fleet 

utilization. 

2.2.12. Cost Optimization: By considering factors like electricity prices, battery 

degradation, and maintenance costs, AI can suggest operational strategies that 

minimize overall costs while maintaining service quality. 

3. AI Techniques in ESB Route Planning and Scheduling 

The integration of AI techniques in Electric School Bus (ESB) route planning and scheduling 

has shown significant promise in improving efficiency, reducing energy consumption, and 

optimizing overall operations.  

3.1. Energy Consumption Estimation 

Accurate energy consumption estimation is crucial for effective route planning and scheduling 

of ESBs. A novel approach combining physical Modelling and machine learning has shown 

promising results: 

Fusion Model: A hybrid model has been developed that combines a simplified physical model 

with a CatBoost decision tree algorithm[7]. This fusion model considers various factors 

affecting energy consumption, including: 

3.1.1. Rolling drag: The resistance force caused by the tires rolling on the road surface. 

3.1.2. Brake consumption: Energy lost during braking. 

3.1.3. Air-conditioning consumption: Energy used by the vehicle's climate control system. 

3.1.4. Vehicle performance characteristics 

3.1.5. Driving habits (e.g., acceleration patterns, speed variations) 

3.1.6. Environmental conditions (e.g., temperature, humidity, wind) 

This model can be valuable for optimizing route planning, estimating range, and improving 

overall energy efficiency in electric bus operations[7]. The fusion model achieved an 

impressive average relative error of 6.1% in estimating energy consumption. This high 

accuracy provides a powerful tool for: 

3.1.7. Optimizing energy consumption of electric buses 

3.1.8. Improving vehicle scheduling 

3.1.9. Rational layout of charging facilities 

3.2. Optimization Algorithms 
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Optimization algorithms play a crucial role in maximizing the efficiency and effectiveness of 

ESB fleet operations. These algorithms address various aspects of ESB management, with a 

particular focus on battery capacity optimization and V2G strategies. 

Battery Capacity Optimization  

Genetic algorithms (GAs) have proven to be an effective approach for optimizing complex 

problems in public transportation, particularly electric school bus operations. GAs are inspired 

by the principles of natural selection and evolution. In the context of electric bus optimization, 

they work as follows: 

3.2.1. Encoding: Each potential solution ( bus schedule and charging plan) is represented 

as a “chromosome” with various parameters. 

3.2.2. Initial Populations: A set of random solutions is generated to form the initial 

population. 

3.2.3. Fitness Evaluation: Each solution is evaluated based on criteria such as energy 

efficiency, route coverage, and adherence to constraints. 

3.2.4. Selection: The best-performing solutions are selected for reproduction. Common 

methods include tournament selection, roulette wheel selection, and Rank-based 

selection.  

3.2.5. Crossover and Mutation: New solutions are created by combining and slightly 

altering the selected solutions. 

3.2.6. Iteration: The process repeats for multiple generations until an optimal or near-

optimal solution is found. 

A study using GAs for speed profile optimization of autonomous electric minibuses 

demonstrated energy consumption reductions for 7-12% compared to constant-speed baseline 

scenarios[9].  GAs have been used to optimize bus schedules by considering factors such as 

Battery capacity and charging times, traffic congestion, passenger demand variations, and 

multiple depots and vehicle types[10][11]. GAs have been employed to optimize skip-stop 

strategies, which can improve overall systems efficiency by allowing buses to skip certain 

stops. This approach has shown promise in reducing fleet size requirements and improving 

service frequency[11].  GAs can determine optimal charging schedules and locations, as well 

as balancing factors such as energy costs, battery degradation, operational constraints, and grid 

load balancing. GAs have demonstrated significant potential in optimizing various aspects of 

electric bus operations, from energy-efficient diving strategies to complex scheduling 

problems. As electric bus adoption continues to grow, these techniques will likely play an 

increasingly important role in maximizing the efficiency and sustainability of public 

transportation systems.  

3.3. Consumption Modelling: Accurate mathematical models were developed to calculate 

the consumption of each type of bus[5]. These models considered factors such as rolling 

drag, brake consumption, air-conditioning consumption, vehicle performance, driving 

habits, and environmental conditions. 
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3.4. Strategic Scheduling: The optimization approach found strategic schedules that 

balanced energy consumption with operations requirements[15]. This demonstrates the 

potential for AI tools to determine optimal battery capacities based on route 

characteristics and energy consumption patterns.  

3.5. Vehicle-to-Grid(V2G) Strategies 

Game-theoretic approaches, particularly Stackelberg games, have been extensively employed 

to model and optimize V2G energy sharing for electric vehicles, including ESBs. 

3.5.1. Stackelberg Game Method: Multiple studies have used Stackelberg games to 

model the interactions between electric vehicles and the grid[16]. In these models, 

the utility company or distribution system operator(DSO) acts as the leader, 

determining optimal incentive prices for demand response events. The ESBs or 

electric vehicle aggregates(EVAs) act as followers, deciding the optimal amount of 

energy to discharge from their batteries. 

3.5.2. Optimization Objectives: For the grid operator(leader): Minimize system costs, 

including installation, replacement, and operation and maintenance costs of energy 

storage systems[19]. For the ESBs (followers): Maximize profits or minimize 

charging costs while providing grid services[20][21]. 

3.5.3. Multi-Level Optimization: Some approaches use bi-level or multi-level 

optimization models to capture the complex interactions between different 

stakeholders[21][22]. These models are often transformed into single-level problems 

using techniques like Karush-kuhn-Tucker (KKT) conditions and strong duality 

theorem[21].  

4. Challenges and Considerations 

4.1. Multi-Realm Approach 

The multi-realm approach to Bus Fleet Management (BFM) is a comprehensive framework 

that recognizes the complexity and interconnectedness of managing electric school bus (ESB) 

fleets. This approach emphasizes the need to consider both mobility and asset management 

aspects simultaneously for optimal fleet performance and efficiency. AI-driven algorithms can 

be employed to design efficient routes that minimize travel time, energy consumption, and 

operational costs. This is particularly important for ESBs, as their range and charging 

requirements need to be carefully considered in route planning[23]. Implementing systems to 

monitor bus locations and adjust routes based on traffic conditions, unexpected events, or 

changes in passenger demand. This dynamic approach can help improve overall fleet efficiency 

and responsiveness[24]. Coordinating student pick-ups and drop-offs while considering factors 

like bus capacity, schedule adherence, and specific needs of different student groups. 

4.2. Data Integration and Security 

Data integration and security are critical aspects of developing effective AI-driven systems for 

Electric School Buses (ESBs). The integration of diverse data sources is essential for creating 

comprehensive and accurate AI models that can optimize fleet operations and enhance safety. 
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Key data sources for ESB management include traffic collision data, which provides valuable 

insights into potential hazards and high-risk areas, and shapefiles, which offer detailed 

geographical information for route planning and optimization. Additionally, real-time traffic 

data, weather information, and vehicle telemetry data are crucial for dynamic route adjustments 

and predictive maintenance. 

However, the integration of these varied data sources raises significant security and privacy 

concerns. Student information, which may be used for route optimization, is particularly 

sensitive and subject to strict regulations like FERPA (Family Educational Rights and Privacy 

Act)[25]. Ensuring the security of this data is paramount to protect student privacy and maintain 

public trust. Moreover, as ESBs become more connected, they become potential targets for 

cyberattacks. Protecting the integrity of vehicle systems and preventing unauthorized access to 

operational data is crucial for maintaining the safety and reliability of the fleet. 

To address these concerns, robust data encryption, secure communication protocols, and 

stringent access controls must be implemented[30]. Regular security audits and compliance 

checks should be conducted to ensure that all data handling practices meet regulatory 

requirements and industry best practices[31]. The implementation of Privacy-Enhancing 

Technologies (PETs) can serve as a promising tool to help data processors demonstrate 

compliance with privacy regulations while still allowing for effective data utilization in 

transportation systems[30][31]. 

4.3. Operational Constraints 

AI-driven route planning and scheduling for Electric School Buses (ESBs) must consider 

various operational constraints to ensure efficient and effective service. These constraints are 

critical components of the Vehicle Routing Problem, which involves the distribution of goods 

or services between depots and customers. In the context of ESBs, time windows for pickups 

and deliveries are paramount, as routes must align with school bell schedules, accommodate 

after-school activities, and consider special education requirements. Vehicle capacity limits are 

another crucial factor, ensuring that routes do not exceed the maximum number of students 

each bus can safely transport while considering the impact of passenger load on the electric 

bus's range and performance[32]. The availability of charging infrastructure is a unique 

constraint for ESBs, requiring route planning to account for charging station locations and 

charging time management. A recent study on Atlanta Public Schools found that 352 out of 

402 routes were suitable for electrification, demonstrating the potential for significant energy 

savings and emissions reductions[32]. Driver preferences and regulations, including work hour 

limitations and union agreements, must also be factored into the AI's decision-making process. 

Research on rural customized bus route optimization has shown that considering these 

constraints can lead to improved operational efficiency[33]. Furthermore, the spatial-temporal 

scheduling of electric bus fleets in power-transportation coupled networks has been explored, 

highlighting the potential for ESBs to serve dual roles as commuting tools and mobile energy 

storage units[35]. By effectively addressing these operational constraints, AI-driven route 

planning and scheduling systems can optimize ESB fleet operations, improving efficiency, 

reducing costs, and enhancing the overall quality of school transportation services. 
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5. Future Perspectives 

5.1. Advanced AI Techniques 

The integration of advanced AI techniques in Electric School Bus (ESB) fleet management 

holds tremendous potential to transform the landscape of school transportation. As we look 

ahead, reinforcement learning (RL) is expected to play a pivotal role in developing highly 

adaptive routing systems. These systems will likely evolve to handle increasingly complex and 

dynamic environments, potentially incorporating real-time data from a wide array of sources 

such as traffic sensors, weather stations, and even social media feeds. Future research may 

focus on developing RL algorithms that can anticipate and proactively respond to patterns in 

traffic flow, student behavior, and energy consumption, leading to unprecedented levels of 

efficiency and reliability in ESB operations. 

The application of federated learning in ESB management is poised to address one of the most 

pressing concerns in the digital age: data privacy. As privacy regulations evolve, this technique 

will likely become essential for school districts seeking to leverage collective data insights 

while maintaining strict control over sensitive information. Future developments may see the 

emergence of sophisticated federated learning frameworks specifically tailored for educational 

transportation systems, potentially incorporating advanced encryption methods and 

decentralized data storage solutions. These innovations could pave the way for large-scale 

collaborations between school districts, enabling the creation of highly optimized, privacy-

preserving AI models for ESB fleet management. 

Explainable AI (XAI) is set to become a cornerstone of public trust in AI-driven transportation 

systems. As AI systems become more complex and influential in decision-making processes, 

the demand for transparency and accountability will likely intensify. Future research in this 

area may focus on developing intuitive visualization tools and natural language interfaces that 

can effectively communicate the rationale behind AI-driven routing and scheduling decisions 

to a non-technical audience. This could lead to the development of "AI assistants" for 

transportation managers, capable of providing clear, context-aware explanations for their 

recommendations and actions. 

Looking further ahead, we may see the convergence of these advanced AI techniques with 

emerging technologies such as quantum computing and edge AI. Quantum algorithms could 

potentially solve complex optimization problems in ESB routing at unprecedented speeds, 

while edge AI could enable real-time decision-making at the vehicle level, reducing latency 

and enhancing responsiveness to local conditions. The integration of these technologies could 

usher in a new era of intelligent, sustainable, and highly efficient school transportation systems, 

setting new standards for safety, reliability, and environmental responsibility in the education 

sector. 

5.2. Integration with Smart Grid Systems 

The integration of Electric School Buses (ESBs) with smart grid systems represents a 

transformative opportunity in the future of sustainable transportation and energy management. 
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As ESBs become more prevalent, their potential to serve as mobile energy storage units will 

likely be fully realized through advanced AI-driven approaches. 

Future AI systems are expected to facilitate seamless, real-time communication between ESBs 

and the smart grid, optimizing energy consumption and enabling efficient Vehicle-to-Grid 

(V2G) services. These systems will likely leverage machine learning algorithms to predict grid 

demand patterns and align them with school bus schedules and route plans. This could result 

in intelligent charging strategies that not only ensure buses are fully charged for their routes 

but also contribute to grid stability during peak demand periods. 

Moreover, AI could enable dynamic pricing models for V2G services, allowing school districts 

to maximize the economic benefits of their ESB fleets. By analyzing historical data and real-

time market conditions, AI systems could determine the most profitable times to sell energy 

back to the grid, potentially offsetting operational costs for school transportation. 

The integration of ESBs with smart grids may also extend to broader smart city initiatives. AI 

could coordinate ESB charging and discharging activities with other electric vehicles and 

renewable energy sources, contributing to a more resilient and sustainable urban energy 

ecosystem. This holistic approach could significantly enhance the role of ESBs in supporting 

community-wide sustainability goals and energy independence. 

5.3. Personalized Transportation Solutions 

AI-driven personalized transportation solutions for students are poised to revolutionize school 

bus operations, offering unprecedented levels of flexibility and efficiency. These advanced 

systems will likely leverage machine learning algorithms to analyze individual student profiles, 

including special needs, extracurricular activities, and dynamic schedules, to create highly 

customized transportation plans. 

AI could enable the development of adaptive routing systems that automatically adjust to daily 

or weekly changes in student activities, optimizing pick-up and drop-off times and locations. 

For students with special needs, AI might coordinate specialized equipment or personnel 

requirements, ensuring seamless integration with regular routes. 

Future AI systems could also incorporate real-time communication channels, allowing parents 

and students to interact with the transportation system dynamically. This could include features 

like last-minute schedule changes or temporary alternative drop-off locations, all automatically 

integrated into the routing algorithm. 

Moreover, AI-driven personalization might extend to in-vehicle experiences. Smart buses 

could adjust lighting, temperature, and even educational content displayed on screens based on 

the preferences and needs of the students on board. 

By 2030, we might see the emergence of "transportation learning systems" that continuously 

improve their understanding of each student's needs and preferences, leading to increasingly 

efficient and tailored services. This level of personalization could significantly enhance the 

educational experience by reducing transportation-related stress and maximizing in-school 

time for students. 
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6. Conclusion 

Based on the comprehensive review presented in this paper, AI-driven route planning and 

scheduling for electric school buses (ESBs) represent a promising and rapidly evolving field 

with significant potential to revolutionize school transportation systems. The integration of 

advanced AI techniques offers numerous benefits, including improved efficiency, reduced 

costs, and enhanced sustainability. 

Key findings from this review include: 

6.1. The multi-realm approach to Bus Fleet Management, encompassing both mobility and 

asset management, is crucial for optimizing ESB operations. 

6.2. AI techniques such as genetic algorithms, reinforcement learning, and game-theoretic 

approaches have shown great promise in addressing complex optimization problems in 

ESB route planning and scheduling. 

6.3. Energy consumption estimation models that combine physical modeling with machine 

learning techniques have demonstrated high accuracy, enabling more efficient route 

planning and battery management. 

6.4. The integration of ESBs with smart grid systems through Vehicle-to-Grid (V2G) 

strategies presents opportunities for both grid stabilization and potential revenue 

generation for school districts. 

6.5. Data integration and security remain critical challenges that must be addressed to ensure 

the privacy and safety of student information while leveraging the benefits of AI-driven 

systems. 

6.6. Operational constraints, including time windows, vehicle capacity limits, and charging 

infrastructure availability, add complexity to the optimization problem but are essential 

considerations for real-world implementation. 

Looking to the future, the development of more sophisticated AI techniques, such as 

explainable AI and federated learning, holds promise for addressing current limitations and 

enhancing the capabilities of ESB management systems. The potential for personalized 

transportation solutions and deeper integration with smart city initiatives could further 

transform the landscape of school transportation. 

In conclusion, while challenges remain, the continued advancement of AI-driven approaches 

for ESB route planning and scheduling has the potential to significantly improve the efficiency, 

sustainability, and overall quality of school transportation services. As this field evolves, it will 

be crucial to balance technological innovation with practical considerations, ensuring that the 

benefits of these systems are realized while maintaining the safety and privacy of students. 
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