

Understanding Cloud-Native Architectures for Scalable Systems:

A Comprehensive Analysis

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

17

Understanding Cloud-Native Architectures for Scalable Systems: A

Comprehensive Analysis

Maruti Pradeep Pakalapati

Independent Researcher, USA

https://orcid.org/0009-0007-5819-920X

 Accepted: 28th June, 2025, Received in Revised Form: 5th July, 2025, Published: 16th July, 2025

Abstract

Cloud-native architectures have fundamentally changed how engineers build scalable, resilient

distributed systems. This article tracks the gradual evolution away from monolithic applications

toward more flexible microservices-based designs. Four essential principles emerge as defining

characteristics: decomposition of services, container-based deployment, automated orchestration,

and standardized API communication. Technical implementation details receive thorough

attention, from the practical challenges of container runtime selection to the nuanced configuration

of orchestration platforms and service mesh deployments. The article deliberately examines

critical design decisions facing architects: choosing appropriate scaling mechanisms, managing

stateless operations, implementing fault-tolerant behaviors, and developing sophisticated traffic

routing. Operational concerns—particularly monitoring capabilities, security controls, and

deployment pipelines—reveal themselves as equally important to technical architecture.

Numerous organizations have documented significant improvements in operational metrics,

infrastructure costs, and service stability after adopting these architectural patterns. The tensions

between theoretical benefits and implementation complexities remain evident throughout,

reflecting the genuine trade-offs architects must navigate when establishing cloud-native systems

across diverse business environments and technical constraints.

Keywords: Microservices, Containerization, Orchestration, Resilience, DevOps

https://orcid.org/0009-0007-5819-920X

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

18

1. Introduction

1.1 The Evolution of Distributed Computing

Something dramatic happened to application development after cloud computing took hold. The

massive, unified codebases previously common in software development started breaking apart.

The monolithic systems everybody relied on for business software since the 1990s have steadily

lost ground to modular designs that actually exploit what cloud platforms offer: grow when needed,

shrink when not, and recover quickly from inevitable failures. This isn't just some technical

upgrade – it's a complete rethinking of how programmers approach software.

The evolutionary path progressed through several distinct phases, none of them particularly easy.

Security folks watching this transition saw each architectural shift bring its own security

headaches. As applications spread across more moving pieces, the potential attack surface

expanded dramatically. Recent security reports keep highlighting the same thing: misconfiguration

remains the top worry among teams running cloud-native systems [1]. Security strategies have

evolved alongside architecture, abandoning old "castle wall" perimeter defenses for more

distributed, identity-based protections woven throughout the system.

1.2 Defining Cloud-Native Architecture

What makes something genuinely "cloud-native" versus just running in the cloud? True cloud-

native architecture embraces specific approaches that fully exploit cloud platforms. Unlike

applications simply lifted and shifted without changes, actual cloud-native systems are deliberately

built for distributed, constantly changing environments. They combine containers, microservices,

declarative interfaces, and immutable infrastructure to create systems that scale automatically,

recover without human intervention, and adapt quickly when business needs change.

Looking at successful implementations reveals patterns that emerged through hard-won

experience. Experts consistently point to three foundational elements: containers, microservices,

and orchestration [2]. These building blocks enable critical capabilities like horizontal scaling,

built-in redundancy, and automated lifecycle management. Reading through technical publications

shows increasing attention to operational concerns – observability and security, particularly,

reflecting how our understanding of truly cloud-native architecture keeps maturing [2]. The

technical community has settled on several defining principles: statelessness, loose coupling, and

embracing failure. Together, these create the resilience that characterizes modern distributed

applications.

1.3 Significance and Industry Adoption

Cloud-native approaches have accelerated across practically every industry. Businesses aren't

adopting cloud-native because tech folks find it fascinating. They're doing it because they

desperately need to move faster, waste fewer resources, and deliver better experiences to

customers. Everyone from two-person startups to hundred-year-old corporations now sees this

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

19

architectural approach not as optional but as absolutely necessary to stay alive in markets that

change faster every year.

Yet security remains a stubborn concern. Despite accelerating adoption, many organizations

struggle to evolve their security practices quickly enough. About 80% report significant security

worries during their cloud-native journey, with runtime security and supply chain vulnerabilities

particularly troublesome [1]. Multi-cloud deployments further complicate things, forcing teams to

protect workloads across different environments with inconsistent native security controls.

Academic researchers tracking cloud-native adoption have mapped distinct maturity phases

organizations typically experience, starting with basic containerization, then advancing toward

sophisticated implementations with comprehensive orchestration, robust monitoring, and fully

automated operations [2]. Their analysis shows a clear correlation between implementation

maturity and business results, with organizations achieving increasingly significant operational

improvements as they progress through each phase. Technical publications have similarly evolved,

moving from basic definitions toward advanced topics like resilience patterns, security

architectures, and performance optimization techniques specifically designed for distributed

systems.

2. Foundational Principles of Cloud-Native Architecture

2.1 Microservices Decomposition

At its heart, cloud-native architecture depends on breaking things into microservices –

methodically splitting complex systems into smaller, independently deployable pieces with clear

boundaries. This directly contradicts the monolithic style, where everything gets tangled together.

With microservices, development teams can build, deploy, and scale individual components

without coordinating with everybody else. Problems stay contained rather than crashing the entire

system. Development speeds up because teams work in parallel on smaller, more manageable

codebases.

Successfully implementing microservices isn't just about making things smaller, though. It

requires thoughtful decomposition along the right boundaries. Veterans in the field emphasize

organizing services around business capabilities rather than technical layers, creating services that

balance independence with cohesion [3]. Real-world experience shows that well-designed

microservices architectures let teams work autonomously while allowing organizations to scale

different parts of their applications independently, dramatically improving both development

speed and operational efficiency.

2.2 Containerization and Immutability

Containers revolutionized deployment by providing lightweight, consistent environments that

package code together with everything needed to run. This ensures applications behave identically

across developer laptops, test environments, and production systems. The immutability principle

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

20

takes this further, treating deployed services as unchangeable artifacts that get completely replaced

rather than modified in place. This approach simplifies deployment and improves reliability by

eliminating the configuration drift that plagues traditional systems.

Best practices insist that containers should remain immutable, short-lived, and disposable, storing

absolutely no state inside the container itself. Technical analysis confirms this immutability

principle substantially reduces configuration inconsistencies while making environments more

reproducible [3]. Implementation patterns have evolved to address common challenges,

particularly the sidecar pattern, which proved remarkably effective for extending application

functionality without touching the core service code. The shift toward container immutability

represents a fundamental change in operations, moving from carefully maintained systems toward

regularly replaced components that nobody expects to last.

2.3 Orchestration and Automation

One simply can't run cloud-native systems at any meaningful scale without tools like Kubernetes

handling the grunt work. These orchestration platforms take over the tedious, error-prone job of

deploying containers, spinning them up or down as needed, and keeping the whole complex

operation running smoothly. Without them, the sheer complexity would overwhelm even the most

talented operations teams. These orchestration layers provide essential infrastructure without

which the complexity would quickly overwhelm human operators.

Recent technical evaluations highlight declarative configuration as critical, where developers

specify what should be deployed rather than detailing exactly how to deploy it [3]. This lets

automated systems figure out the optimal implementation path, improving both reliability and

efficiency. Automation extends beyond initial deployment to encompass the entire application

lifecycle – including testing, scaling, self-healing, and updates. The "design for automation"

principle influences everything from service structure to configuration management, with

declarative specifications forming the foundation for reliable automation throughout the system.

2.4 API-Driven Communication

Cloud-native systems rely heavily on clearly defined, properly versioned APIs when services need

to talk to each other. This approach keeps services from becoming too tangled together, so teams

can update or replace individual pieces without breaking everything else. When services

communicate through well-documented APIs rather than direct connections, developers can

integrate different technologies and add new capabilities more easily, and build systems that adapt

when requirements inevitably change.

Technical literature documents several communication patterns that emerged as best practices.

Event-based asynchronous communication proved particularly effective for maintaining loose

coupling between services, while traditional request-response patterns remain valuable when

immediate feedback matters [4]. API gateways emerged as critical architectural components,

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

21

providing a single entry point for clients while handling cross-cutting concerns like authentication,

rate limiting, and request routing. Studies of real-world deployments emphasize clear

communication contracts and careful API versioning strategies that enable services to evolve

independently without breaking existing integrations.

Table 1: Cloud-Native Architecture Principles: Key Components and Benefits [3,4]

Principle Primary Benefit

Microservices Decomposition Independent development and deployment

Containerization and Immutability Consistent environments and reduced configuration drift

Orchestration and Automation Efficient scaling and self-healing capabilities

API-Driven Communication Loose coupling and technology independence

Sidecar Pattern Implementation Extended functionality without core code modification

3. Key Technologies Enabling Cloud-Native Systems

3.1 Container Technologies

3.1.1 Docker and Container Runtimes

Container technologies form the foundation of cloud-native systems, providing lightweight

virtualization that enables consistent application packaging and execution across diverse

environments. Research on container security has revealed that while containers offer significant

benefits for application deployment, they also introduce unique security considerations related to

isolation mechanisms and shared kernel resources [5]. The evolution of container runtime

architectures has been driven by these security concerns, with newer implementations focusing on

enhanced isolation properties through techniques such as user namespace separation and reduced

privilege requirements. These security enhancements address critical vulnerabilities identified in

earlier container implementations, making container technology increasingly viable for security-

sensitive workloads.

3.1.2 Container Image Repositories

Container image repositories serve as critical infrastructure components for cloud-native systems,

enabling the reliable distribution of container images across development and production

environments. Security research on container ecosystems has identified image repositories as a

potential attack vector, highlighting the importance of implementing robust verification

mechanisms [5]. Modern repository architectures incorporate content verification through digital

signatures and cryptographic hashing to ensure image integrity throughout the distribution process.

These verification mechanisms are essential for preventing supply chain attacks that could

otherwise introduce malicious code into production environments through compromised container

images.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

22

3.2 Orchestration Platforms

3.2.1 Kubernetes Architecture

Orchestration platforms manage the deployment, scaling, and operations of containerized

applications, with Kubernetes emerging as the predominant solution in this space. Academic

research on serverless computing architectures has identified orchestration platforms as a key

enabling technology for next-generation cloud applications, providing the foundation for dynamic

resource allocation and automated lifecycle management [6]. The control plane architecture

employed by Kubernetes, consisting of components that continuously work to reconcile desired

and actual system states, represents a significant advancement in infrastructure management

approaches. This reconciliation-based approach enables self-healing capabilities that

automatically recover from failures without human intervention, dramatically improving system

reliability.

3.2.2 Service Discovery and Load Balancing

Service discovery and load balancing mechanisms enable reliable communication between

dynamically scheduled components in cloud-native systems. Research on serverless architectures

has highlighted the challenges of managing communication in highly dynamic environments

where service instances may be created or destroyed at any moment [6]. The service discovery

patterns implemented in orchestration platforms address these challenges through automated

endpoint registration and health checking, ensuring that client requests are directed only to healthy

service instances. These mechanisms abstract away the complexity of locating and connecting to

services in distributed environments, simplifying application development while improving

system resilience.

3.3 Service Mesh Technologies

3.3.1 Service Mesh Implementations

Service mesh technology addresses the challenges of managing service-to-service communication

in microservices architectures. Research on serverless computing has identified network

management as a significant challenge in distributed systems, particularly for applications with

complex inter-service communication patterns [6]. Service mesh implementations provide a

dedicated infrastructure layer for handling network functions, including routing, encryption, and

authentication. This separation of network concerns from application logic enables more consistent

implementation of communication policies across heterogeneous services, improving both security

and observability in complex distributed systems.

3.3.2 Sidecar Proxy Patterns

The sidecar proxy pattern has emerged as the predominant implementation approach for service

mesh architectures. Security research has demonstrated that this pattern can enhance application

security by implementing consistent access controls and encryption across services without

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

23

modifying application code [5]. By intercepting all network traffic to and from application

containers, sidecar proxies enable comprehensive monitoring and policy enforcement. This pattern

exemplifies the cloud-native principle of separation of concerns, allowing specialized components

to handle cross-cutting requirements while keeping application containers focused on business

logic. The adoption of this pattern continues to grow as organizations recognize the benefits of

consistent network policy implementation across increasingly complex distributed systems.

Table 2: Key Technologies Enabling Cloud-Native Systems [5,6]

Technology Primary Function

Container Runtimes Consistent application packaging and execution

Container Image Repositories Secure distribution of container images

Kubernetes Orchestration Automated deployment and lifecycle management

Service Discovery Dynamic routing to healthy service instances

Service Mesh Management of service-to-service communication

4. Designing for Scalability and Resilience

4.1 Horizontal Scaling Strategies

When systems get busy, architects face a choice. Some make individual machines bigger - vertical

scaling. Cloud-native folks take a different path. They add more copies of the same service -

horizontal scaling. Kubernetes handles this with tools like Horizontal Pod Autoscalers that add or

remove instances as traffic changes.

Teams that've run microservices in production learned this isn't straightforward. Their research

revealed messy, non-linear relationships between resources and performance [7]. Some services

eat CPU predictably. Others gobble memory in weird patterns. Generic scaling rules fail

spectacularly under real-world conditions. Smart architects create custom scaling approaches for

different workload types. They observe how each component actually behaves under stress and

craft policies that match these patterns. Cookie-cutter solutions waste money during quiet periods

and collapse under heavy load

4.2 Statelessness and Data Management

Getting statelessness right challenges even experienced architects. The core idea sounds simple:

services shouldn't store important stuff locally. This makes them interchangeable, like replaceable

parts. However, implementing this means pushing the state outward to databases and caches

without killing performance or data consistency.

Distributed systems experts consistently identify their biggest challenges, and data management

tops the list. The thorniest issue? Maintaining consistency across service boundaries [8]. Teams

face an inescapable tension between letting services control their data versus ensuring data stays

consistent system-wide. Nobody's found perfect answers, but several patterns address different

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

24

aspects of this problem. Some architectures use events to share changes asynchronously. Others

implement saga patterns with compensating actions rather than traditional transactions. Every

approach trades between consistency, availability, and partition tolerance. Architects make tough

calls based on specific business requirements - what works for banking fails for social media.

4.3 Fault Tolerance and Self-Healing

Old-school systems tried to prevent failures. Cloud-native systems expect them. This philosophy

changes everything about design. Through health checks, readiness probes, and automated restarts,

modern systems spot problems and recover automatically - often before users notice anything

amiss.

Studies examining microservices resilience identified several patterns that dramatically improve

robustness: circuit breakers, bulkheads, and timeout management [8]. Implementing these patterns

demands sophisticated monitoring and automation to catch failures quickly and trigger appropriate

fixes. As systems grow, these interactions tangle into complexity that breaks traditional

troubleshooting approaches. This drove the development of specialized tools for distributed tracing

and service mapping. These tools help engineers track how failures cascade through interconnected

services, letting them diagnose and fix problems that would otherwise remain mysterious and

unfixable.

4.4 Traffic Management Patterns

Keeping systems stable during deployments remains a persistent challenge. Traffic management

techniques like circuit breaking, rate limiting, and canary releases help maintain stability while

minimizing deployment risks. These patterns control exactly how requests flow through the

system.

Practical studies highlight progressive deployment techniques as essential for stability during

updates [8]. Approaches like canary deployments, blue-green releases, and feature toggles let

teams validate changes with limited exposure before full rollout. Implementing these strategies

requires sophisticated traffic routing to direct specific users to different service versions. Managing

this traffic across dozens or hundreds of services became so complex that specialized service mesh

technologies emerged. These tools handle traffic management independently from application

code, enabling consistent implementation of routing, resilience, and security policies without

modifying applications themselves.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

25

Table 3: Designing for Scalability and Resilience [7,8]

Principle Implementation Approach

Horizontal Scaling Custom scaling policies based on workload behavior

Statelessness External state management with consistency patterns

Fault Tolerance Circuit breakers, bulkheads, and automated recovery

Traffic Management Progressive deployment and canary releases

Self-Healing Health checks and automated remediation

5. Operational Aspects of Cloud-Native Systems

5.1 Observability and Monitoring

Cloud-native systems create monitoring nightmares. Components constantly change - appearing,

disappearing, and moving. Traditional monitoring simply breaks. Modern systems need

comprehensive observability spanning metrics, logs, and distributed traces to provide useful

insights.

DevOps veterans emphasize monitoring and observability as non-negotiable for managing

complex systems [9]. Organizations that build robust observability find and fix problems faster,

boosting reliability and user satisfaction. The field gradually shifted from alerting on raw metrics

(like memory usage) toward service-level objectives that actually matter to users. This helps teams

focus on meaningful issues rather than chasing phantom problems that don't affect service quality.

Examining large-scale container deployments reveals effective monitoring needs instrumentation

at multiple levels - from infrastructure to application code [10]. Cloud environments create unique

challenges as containers pop in and out of existence, responding to workload changes. Monitoring

systems must automatically discover and track these ephemeral resources without human help.

This completely breaks traditional monitoring designed for static infrastructure, where servers

remained unchanged for years. Modern platforms must handle constant change while somehow

providing meaningful insights into system behavior under varying conditions.

5.2 Security Considerations

5.2.1 Authentication and Authorization

Distributed systems demand completely different security approaches. With services constantly

communicating internally, robust identity and access management becomes critical. Teams must

implement service-to-service authentication, role-based access controls, and integration with

external identity providers.

DevOps security practitioners focus on "shifting left" - baking security throughout development

instead of tacking it on at the end [9]. This approach matters deeply in cloud-native systems where

traditional perimeter security fails. Automated security testing and policy enforcement within

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

26

deployment pipelines catch issues early, dramatically reducing both cost and risk. The explosion

of services in cloud-native architectures multiplies potential attack vectors, making comprehensive

security frameworks essential components of system design.

5.2.2 Network Security and Encryption

Securing network traffic in distributed systems requires multiple layers: network policies, mutual

TLS authentication, and encryption for data in transit. Implementing these controls in constantly

changing environments creates unique challenges.

Studies of container orchestration emphasize network segmentation in multi-tenant environments

[10]. Container deployments need automated policy management that adapts to constantly

changing service topologies. Declarative network policies - where access rules depend on service

identities rather than network locations - provide stronger security in environments where IP

addresses and network layouts constantly shift. This identity-based approach matches zero-trust

principles, ensuring consistent policy enforcement regardless of where workloads run or how

underlying infrastructure evolves.

5.3 Continuous Delivery Pipelines

5.3.1 GitOps and Infrastructure as Code

GitOps uses version control repositories as a single source of truth for infrastructure and

application configuration. This approach gained tremendous traction in cloud-native

environments, enabling automated synchronization between the desired state (in version control)

and the actual system state.

DevOps methodologies advocate version control for everything, including infrastructure

definitions and configuration [9]. This lets teams track changes over time, understand why

configurations evolved, and roll back to known-good states when things break. Testing

infrastructure follows similar principles to testing application code. Teams implement automated

checks to catch security holes and quality issues before anything hits production. Defining

infrastructure through code rather than clicking around in dashboards fits hand-in-glove with

cloud-native thinking. Teams can track changes, repeat deployments exactly, and always know

who changed what and why - even across completely different environments.

5.3.2 Progressive Deployment Strategies

Cloud-native systems enable sophisticated deployment approaches that minimize risk by gradually

exposing new functionality while maintaining quick rollback capabilities.

 Production deployment studies emphasize controlled, incremental rollouts to minimize risk [10].

Progressive strategies let teams validate changes with limited exposure before expanding to all

users. These approaches prove invaluable in microservices architectures where complex

interactions create unexpected behaviors that testing environments simply cannot predict.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

27

Automated rollback mechanisms triggered by key performance indicators provide an essential

safety net, enabling fast recovery from problematic deployments without manual intervention.

These techniques help organizations balance innovation speed with operational stability - a critical

consideration in competitive business environments.

Fig 1: Cloud-Native Operations: The Three Pillars of Operational Excellence [9,10]

Conclusion

Moving to cloud-native architecture fundamentally changes how teams build and run distributed

systems. Organizations that embrace microservices, containers, and declarative APIs gain

tremendous advantages - systems that grow or shrink on demand, recover automatically from

failures, and adapt quickly when business needs change. These benefits come at a cost, though.

The complexity increases dramatically compared to traditional approaches. Companies can't just

buy some tools and expect success. They certainly need technical skills, but equally important,

they need to reshape how teams work together. Old organizational boundaries between

development and operations simply don't function in this new world. The ecosystem keeps

evolving, too. Serverless functions, WebAssembly, and edge computing push cloud-native

concepts into new territories, creating fresh opportunities and challenges for teams willing to

explore them. Smart organizations don't try transforming everything overnight. They start small -

maybe containerizing a few applications, implementing basic CI/CD pipelines - then gradually add

more advanced patterns as teams build experience and confidence. This measured approach lets

them create systems that handle today's requirements while remaining flexible enough to tackle

whatever challenges tomorrow brings. Retry, Claude can make mistakes. Please double-check

responses.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 7, Issue No. 9, pp. 17 - 28, 2025 www.carijournals.org

28

References

[1] Paloalto, "The State of Cloud-Native Security Report 2023," 2023. [Online]. Available:

https://www.content.shi.com/cms-content/accelerator/media/pdfs/palo-alto/palo-alto-122623-the-

state-of-cloud-native-security-report-2023.pdf

[2] Nane Kratzke and Peter-Christian Quint, "Understanding Cloud-native Applications after 10

Years of Cloud Computing - A Systematic Mapping Study," Journal of Systems and Software

126(April):1-16, 2017. [Online]. Available:

https://www.researchgate.net/publication/312045183_Understanding_Cloud-

native_Applications_after_10_Years_of_Cloud_Computing_-_A_Systematic_Mapping_Study

[3] Tom Grey, "5 principles for cloud-native architecture—what it is and how to master it," Google

Cloud, 2019. [Online]. Available: https://cloud.google.com/blog/products/application-

development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it

[4] Nicola Dragoni et al., "Microservices: yesterday, today, and tomorrow," arXiv, 2017. [Online].

Available: https://arxiv.org/pdf/1606.04036

[5] Xing Gao et al., "ContainerLeaks: Emerging Security Threats of Information Leakages in

Container Clouds." [Online]. Available: https://www.eecis.udel.edu/~hnw/paper/dsn17b.pdf

[6] Ioana Baldini et al., "Serverless Computing: Current Trends and Open Problems" arxiv, 2017.

[Online]. Available: https://arxiv.org/pdf/1706.03178

[7] Hamzeh Khazaei et al., "Efficiency Analysis of Provisioning Microservices," 2016 IEEE

International Conference on Cloud Computing Technology and Science (CloudCom), 2016.

[Online]. Available:

https://www.researchgate.net/publication/312964026_Efficiency_Analysis_of_Provisioning_Mic

roservices

[8] Pooyan Jamshidi, et al., "Microservices: The Journey So Far and Challenges Ahead," IEEE

Software 35(3):24-35, 2018. [Online]. Available:

https://www.researchgate.net/publication/324959590_Microservices_The_Journey_So_Far_and_

Challenges_Ahead

[9] Tom Hall, "DevOps Best Practices," Atlassian. [Online]. Available:

https://www.atlassian.com/devops/what-is-devops/devops-best-practices

[10] Brendan Burns et al., "Borg, Omega, and Kubernetes: Lessons Learned from Three Container-

Management Systems Over a Decade," 2016. [Online]. Available:

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf

©2025 by the Authors. This Article is an open access article distributed

under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/

https://www.content.shi.com/cms-content/accelerator/media/pdfs/palo-alto/palo-alto-122623-the-state-of-cloud-native-security-report-2023.pdf
https://www.content.shi.com/cms-content/accelerator/media/pdfs/palo-alto/palo-alto-122623-the-state-of-cloud-native-security-report-2023.pdf
https://www.researchgate.net/publication/312045183_Understanding_Cloud-native_Applications_after_10_Years_of_Cloud_Computing_-_A_Systematic_Mapping_Study
https://www.researchgate.net/publication/312045183_Understanding_Cloud-native_Applications_after_10_Years_of_Cloud_Computing_-_A_Systematic_Mapping_Study
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://cloud.google.com/blog/products/application-development/5-principles-for-cloud-native-architecture-what-it-is-and-how-to-master-it
https://arxiv.org/pdf/1606.04036
https://www.eecis.udel.edu/~hnw/paper/dsn17b.pdf
https://arxiv.org/pdf/1706.03178
https://www.researchgate.net/publication/312964026_Efficiency_Analysis_of_Provisioning_Microservices
https://www.researchgate.net/publication/312964026_Efficiency_Analysis_of_Provisioning_Microservices
https://www.researchgate.net/publication/324959590_Microservices_The_Journey_So_Far_and_Challenges_Ahead
https://www.researchgate.net/publication/324959590_Microservices_The_Journey_So_Far_and_Challenges_Ahead
https://www.atlassian.com/devops/what-is-devops/devops-best-practices
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/44843.pdf

