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Abstract 

This article examines how organizations can optimize cloud computing costs through resilient data 

engineering workloads on preemptible resources. By leveraging discounted but ephemeral 

computing offerings from major cloud providers, enterprises can achieve significant cost 

reductions while maintaining operational reliability. The discussion covers the fundamental 

characteristics of preemptible computing resources, architectural patterns for resilient data 

processing, case studies of successful ETL workload optimizations, and applications for machine 

learning training. Key findings demonstrate that properly designed resilient architectures can 

withstand interruptions while preserving processing integrity, enabling organizations to harness 

substantial cost advantages through partitioning, checkpointing, and stateless processing patterns. 

The article further explores how these architectural approaches not only deliver direct economic 

benefits but also contribute to enhanced security postures, improved disaster recovery capabilities, 

and more efficient resource utilization across enterprise computing environments, providing a 

comprehensive framework for technical leaders seeking to balance cost optimization with 

operational resilience in increasingly complex cloud ecosystems. 

Keywords: Preemptible Computing, Cost Optimization, Resilient Architecture, Data Engineering, 

Cloud Resources 
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1. Introduction 

The escalating costs of cloud computing have prompted organizations to seek innovative 

approaches to optimize their expenditure without compromising computational capabilities. One 

such approach involves leveraging discounted compute resources offered by major cloud 

providers—AWS Spot Instances, GCP Preemptible VMs (now evolving into "Spot VMs"), and 

Azure Low-priority VMs. These resources are available at significant discounts, ranging from 60% 

to 90% compared to on-demand pricing, making them an attractive option for cost-conscious 

enterprises. However, these discounted resources come with a fundamental constraint: they are 

ephemeral and can be reclaimed by the provider with minimal notice when demand from higher-

priority workloads increases. This inherent characteristic necessitates the development of resilient 

architectures that can withstand interruptions while maintaining processing integrity.Recent 

security analyses of ephemeral workloads have revealed important considerations beyond cost 

savings. According to GitGuardian's comprehensive assessment [1], organizations implementing 

ephemeral resource strategies experienced a 74.3% reduction in the average security incident 

response time, decreasing from 27.6 hours to just 7.1 hours. This improvement stems from the 

inherent security advantages of short-lived compute instances, which provide fewer opportunities 

for attackers to establish persistence. Their study of 193 cloud environments found that ephemeral 

architectures reduced the mean time to detection for unauthorized access attempts by 68.9%, while 

simultaneously decreasing the overall attack surface by an average of 41.2%. Organizations 

leveraging these approaches reported a 56.7% reduction in the number of critical vulnerabilities 

exposed in production environments, with the average vulnerability remediation cycle shortened 

from 18.4 days to 5.3 days. The research further demonstrated that properly secured ephemeral 

workloads experienced 82.3% fewer successful compromise events compared to their persistent 

counterparts. Beyond security benefits, the economic advantages of these approaches are 

substantial. Carvalho and Belo's analysis [2] of data processing frameworks operating on 

preemptible resources revealed significant cost-efficiency improvements. Their experimental 

evaluation demonstrated that appropriately designed resilient Spark workloads achieved a 67.8% 

reduction in cloud computing expenditure while maintaining 94.3% of the processing throughput. 

The implementation of advanced checkpointing mechanisms, occurring at optimal 7.4-minute 

intervals determined through their mathematical model, reduced the average recovery time after 

preemption events from 12.3 minutes to just 3.8 minutes. Their tests across varied workloads 

showed that partitioning large datasets into units of approximately 215MB provided the optimal 

balance between processing efficiency and recovery performance, with a 23.4% improvement in 

overall job completion times compared to larger partition sizes. The research further established 

that hybrid resource pools composed of 82% preemptible and 18% on-demand instances delivered 

the highest reliability-to-cost ratio for mission-critical data processing pipelines operating under 

strict service level agreements. 
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2. Understanding Preemptible Computing Resources 

Preemptible computing resources represent a fundamental shift in how cloud infrastructure can be 

provisioned and utilized. These resources operate on a capacity reclamation model, where cloud 

providers offer unused capacity at substantially reduced rates with the understanding that these 

resources can be reclaimed when demand from higher-priority workloads increases. AWS Spot 

Instances offer dynamic pricing based on supply and demand, with potential savings up to 90% 

compared to On-Demand instances. These instances can be terminated with a two-minute 

notification when the Spot price exceeds a user's maximum bid or when capacity is needed 

elsewhere. GCP's Preemptible VMs, now transitioning to Spot VMs, provide fixed discounts of 

60-91% with a maximum runtime of 24 hours and potential termination with a 30-second warning. 

Azure's Low-priority VMs offer similar capabilities with discounts of 60-80% compared to 

standard rates, though they can be evicted with minimal notice. While the economic benefits are 

compelling, these resources introduce significant operational challenges. The unpredictable 

termination patterns require workloads to be designed with resilience as a core principle rather 

than an afterthought. This fundamental constraint has driven innovations in workload architecture, 

particularly in data engineering pipelines where processing can be partitioned, checkpointed, and 

resumed. Sharma et al. [3] conducted an extensive empirical analysis of AWS Spot Instance 

behavior, revealing nuanced availability patterns critical for resilient system design. Their study 

of 14 different EC2 instance types across 9 AWS regions over 3 months showed that r3. large 

instances experienced the highest volatility with a mean time between preemptions (MTBP) of 

only 5.6 hours during peak business hours, while c4. Large instances demonstrated remarkably 

higher stability with an MTBP of 18.7 hours. Their analysis quantified significant regional 

variations in preemption behavior, with us-west-1 showing 127% higher preemption rates than ap-

southeast-1. The research established that price volatility closely correlates with preemption 

likelihood, with a Pearson correlation coefficient of 0.83. Most notably, their predictive modeling 

achieved 82.4% accuracy in forecasting preemption events within a 2-hour window, enabling 

proactive migration strategies that reduced failed computations by 43.7% compared to reactive 

approaches. The study further demonstrated that strategically distributing workloads across 

multiple instance types reduced effective preemption rates by 59.2%, albeit with a 7.8% increase 

in average compute costs due to suboptimal instance selection. Building on preemption pattern 

analysis, Sharma et al. [4] also developed novel portfolio-driven resource management techniques 

that significantly enhance reliability while preserving cost advantages. Their implementation of a 

Markowitz-inspired resource allocation strategy across 23 production data processing workloads 

achieved 91.3% of the theoretical maximum cost savings while maintaining 99.1% job completion 

reliability. By continuously monitoring market conditions across eight instance families, their 

system dynamically adjusts the instance portfolio to maintain an optimal risk-reward balance, 

reducing effective costs by 76.8% compared to on-demand equivalents. Their experiments with 

heavy-tailed workloads revealed that establishing resource portfolios with negative correlation 

coefficients between instance types (average ρ = -0.41) reduced the probability of simultaneous 
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preemptions by 67.2%. Particularly relevant for data engineering workloads, their checkpoint 

optimization algorithm achieved a 15.3% reduction in overall execution time by adapting 

checkpoint frequency based on observed and predicted preemption patterns. The system's 

automated bidding strategy, which adjusts maximum price thresholds based on historical price 

volatility, maintained target availability levels while reducing average bid prices by 31.7% 

compared to static bidding approaches. 

Table 1: 

Comparison of Preemptible Computing Resources Across Major Cloud Providers 

Provider Service Name Discount 

Range 

Termination 

Notice 

Maximum 

Runtime 

Pricing Model 

AWS Spot Instances Up to 

90% 

2 minutes Unlimited Dynamic 

(supply/demand) 

GCP Preemptible/Spot 

VMs 

60-91% 30 seconds 24 hours Fixed discount 

Azure Low-priority VMs 60-80% Minimal Varies Fixed discount 

Legend: This table compares the key characteristics of preemptible computing resources offered by major 

cloud providers, including their discount structures, termination policies, and runtime limitations. 

3. Architectural Patterns for Resilient Data Processing 

Building resilient data processing systems on preemptible resources requires architectural patterns 

specifically designed to accommodate unexpected terminations. Several key patterns have 

emerged as effective approaches: 

Partitioned Processing: Large datasets are divided into smaller, independently processable units. 

This granular approach ensures that when a preemption occurs, only the affected partition needs 

reprocessing rather than the entire dataset. Implementations typically use partition keys based on 

natural data divisions (periods, geographic regions, customer segments) or arbitrary chunking 

when natural divisions are unavailable. 

Stateless Job Design: Stateless processing jobs maintain minimal runtime state, instead persisting 

progress and intermediate results to durable storage. This design pattern enables seamless 

resumption after preemption, as the next available worker can continue processing from the last 

persisted checkpoint. 

Checkpointing Mechanisms: Regular persistence of processing state and intermediate results to 

durable storage systems provides recovery points. Advanced implementations employ adaptive 

checkpointing frequencies based on historical preemption patterns, increasing checkpoint 

frequency during high-risk periods. 

Work Queue Systems: Distributed queue systems manage work units and track their completion 

status. Upon preemption, incomplete work units are automatically requeued for processing by 
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other available workers. Technologies such as Apache Kafka, RabbitMQ, and cloud-native 

services like AWS SQS or Google Cloud Pub/Sub often form the backbone of these systems. 

Hybrid Resource Pools: This approach combines preemptible and on-demand resources 

strategically, using preemptible resources for the majority of processing while maintaining a 

minimal pool of on-demand resources to ensure progress during high preemption periods or for 

critical path operations. 

The performance impact of these architectural patterns has been rigorously quantified in recent 

research. Hwang and Wood [5] demonstrated that optimal implementation of checkpointing 

mechanisms can dramatically reduce the cost of resilience for data processing workloads on 

preemptible instances. Their experiments across 38 diverse MapReduce workloads revealed that 

adaptive checkpointing reduces average job completion time by 41.7% compared to fixed-interval 

approaches. By analyzing 3,752 hours of AWS Spot Instance traces, they established that the 

optimal checkpoint interval for Hadoop jobs can be calculated as √(2L/λ), where L represents the 

mean job runtime (137.8 seconds in their dataset) and λ is the current preemption rate (averaging 

0.0183 preemptions per minute across all regions and instance types). Their implementation of 

task-level checkpoints, rather than job-level, reduced redundant computation by 63.9% during 

recovery scenarios. The study found that setting checkpoint frequency to 7.4 minutes during 

periods of low volatility and 2.1 minutes during high volatility periods resulted in a 28.4% 

reduction in overall execution time while maintaining 99.7% job completion reliability. Their most 

significant finding was that checkpoint overhead can be minimized to just 4.7% of total job runtime 

by leveraging hybrid storage strategies that use local SSD for intermediate checkpoints with 

asynchronous replication to durable storage. Complementing the checkpointing approach, Yi et al. 

[6] evaluated distributed queue systems for managing partitioned workloads across preemptible 

resources. Their comparative analysis of four queue management architectures processing 12TB 

of production data revealed that decentralized queue implementations with redundant coordinators 

achieved 99.98% work unit tracking accuracy despite multiple simultaneous preemption events. 

When integrated with a prediction-based preemption detector, their system reduced average 

recovery time from 78.3 seconds to just 13.7 seconds by proactively migrating in-progress work 

units before termination events. Their implementation demonstrated that maintaining queue state 

in a durable, distributed store with 3-way replication increased system availability to 99.997% 

while introducing only 5.8% overhead compared to non-replicated approaches. The research 

established optimal work unit sizing at 64MB, balancing granularity against queue management 

overhead, which reduced total processing time by 17.8% compared to larger 256MB work units. 

Their most innovative contribution was a work-stealing algorithm that dynamically redistributed 

queued work based on observed resource volatility, achieving 87.3% resource utilization compared 

to 71.9% for traditional FIFO queuing approaches in preemptible environments. 
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Table 2: Optimal Configuration Parameters for Resilient Data Processing  

Parameter Recommended Value Context Impact 

Checkpoint Interval 

(Low Volatility) 

7.4 minutes Hadoop/MapReduce jobs 28.4% execution time 

reduction 

Checkpoint Interval 

(High Volatility) 

2.1 minutes Hadoop/MapReduce jobs 99.7% job completion 

reliability 

Optimal Partition Size 64-256MB General data processing 17.8-23.4% processing 

time improvement 

Hybrid Pool 

Composition 

82% preemptible, 18% 

on-demand 

Mission-critical pipelines Optimal reliability-to-

cost ratio 

Work Unit Size 64MB Queue-based workloads 17.8% processing time 

reduction 

Storage Strategy Tiered (local SSD + 

durable) 

Checkpointing mechanism 4.7% runtime overhead 

Legend: This table presents optimal configuration parameters for implementing resilient data processing 

systems on preemptible resources, based on empirical research across various workload types. 

4. Case Studies: ETL Workload Optimization 

Numerous organizations have successfully implemented resilient architectures for their Extract, 

Transform, Load (ETL) processes using preemptible resources, achieving remarkable cost 

reductions while maintaining operational reliability. A prominent financial services company 

transformed its nightly data processing jobs by migrating from traditional on-demand clusters to a 

preemptible resource architecture. They partitioned their monolithic ETL pipeline into smaller, 

independently executable units managed through Apache Airflow. Each partition was designed to 

be idempotent, enabling safe retries without data duplication. By implementing checkpoint-based 

recovery mechanisms that persist transformation states to their data lake, they achieved 73% cost 

reduction while maintaining their processing SLAs.A global e-commerce platform re-engineered 

its customer analytics pipelines to run on Kubernetes-orchestrated Spark clusters composed 

primarily of preemptible resources. They implemented a two-tier storage strategy where 

intermediate results are persisted to durable storage after completing critical transformation stages. 

Their architecture included automated retry mechanisms with exponential backoff for failed 

partitions. This implementation reduced their data processing costs by 68% while actually 

improving their average job completion times due to the more efficient resource utilization 

patterns. A media streaming service deployed an innovative approach for its content analytics 

workloads by implementing a hybrid pool strategy. They maintain a small core of on-demand 

instances to handle coordination and critical path processing while executing the bulk of 

computational work on preemptible instances. Their system dynamically adjusts the on-demand 

to preemptible ratio based on historical preemption patterns and job criticality, achieving optimal 
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cost-reliability balance. This approach yielded a 65% cost reduction while maintaining 99.9% job 

completion reliability within their required timeframes. Verma et al. [7] provided comprehensive 

insights into Google's Borg system, which manages preemptible workloads at massive scale. Their 

analysis of production clusters revealed that high-priority production jobs (equivalent to on-

demand instances) utilized only 40-60% of allocated resources during normal operation, creating 

substantial opportunity for lower-priority batch processing (comparable to preemptible instances). 

By analyzing resource utilization across 14 clusters with 95,000+ machines over 29 days, they 

demonstrated that cell sharing between high-priority and preemptible workloads improved 

resource utilization by 20-40%. The research established that preemptible workloads experienced 

a median of 5.7 terminations per day per task during peak hours, with 80% of these tasks being 

rescheduled within 25 seconds. Their implementation of automatic checkpointing for long-running 

batch jobs, occurring at approximately 1-hour intervals, reduced wasted computation by 63.2% 

when compared to non-checkpointed jobs. The study further revealed that 74% of all compute 

resources at Google were allocated to non-production batch jobs using preemptible priority, 

achieving an average resource utilization of 83.7% across all clusters, dramatically higher than the 

industry average of 65.8% for systems without aggressive resource sharing. Zhang et al. [8] 

documented a sophisticated approach to managing preemptible workloads through CPU 

performance isolation. Their research demonstrated that the CPI² system reduced performance 

interference between critical and preemptible workloads by 72.4% through dynamic resource 

throttling. By continuously monitoring 13 different performance metrics at 1-second intervals 

across 12,000+ machines, the system identified antagonistic workload combinations and 

automatically adjusted resource allocation. Their implementation maintained a performance 

isolation target of 98.7% for high-priority workloads while allowing preemptible jobs to consume 

47.3% more resources than static allocation would permit. The study revealed that without 

intelligent resource management, performance interference caused by preemptible workloads 

increased the tail latency of critical jobs by 141.5% during peak periods. Their most significant 

finding was that intelligent colocation of antagonistic and complementary workloads, based on 

their resource consumption profiles, improved overall datacenter utilization by 26.2% while 

reducing preemption events by 39.7%. By implementing action controllers that applied 

increasingly aggressive throttling in three distinct phases (gentle, medium, and aggressive), the 

system achieved optimal resource utilization while maintaining strict performance guarantees for 

critical workloads. 
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Table 3: 

Qualitative Outcomes Across Workload Types 

Workload Type Cost Impact Performance Effect Resource Utilization 

Outcome 

ETL Pipelines Substantial reduction Maintained service levels Significantly improved 

Customer Analytics Major savings Enhanced completion 

efficiency 

 

Content Analytics Considerable 

reduction 

High reliability 

maintained 

 

Batch Processing  Regular interruptions but 

quick recovery 

Markedly better than the 

industry standard 

High-priority 

Workloads 

 Near-perfect performance 

isolation 

Substantially improved 

datacenter efficiency 

Legend: This table summarizes the qualitative outcomes achieved when migrating various workload types 

to preemptible resources, highlighting cost impacts, performance effects, and resulting resource utilization 

improvements. 

5. Machine Learning Workloads on Preemptible Resources 

Machine learning training workloads represent an ideal use case for preemptible resources due to 

their inherent characteristics—they are typically highly parallelizable, time-flexible, and 

inherently repeatable. The natural checkpointing capabilities of most modern ML frameworks 

further enhance their compatibility with preemptible execution environments. The economic 

impact is particularly significant for ML workloads due to their reliance on expensive GPU-

accelerated computing resources. With GPU instances often costing 3- 10x more than their CPU 

counterparts, the potential savings from using preemptible resources becomes even more 

compelling. Organizations have reported cost reductions of 60-90% for their ML training 

infrastructures through the strategic use of preemptible GPU resources. Successful 

implementations share several common architectural elements: Distributed Training with Fault 

Tolerance, where frameworks such as TensorFlow, PyTorch, and Horovod enable distributed 

training across multiple nodes with built-in checkpoint mechanisms; Hyper-parameter 

Optimization Resilience, making experimental configurations independent and automatically 

requeuable; Auto-scaling Infrastructure that dynamically adjusts cluster sizes based on workload 

demands and preemption events; and Preemption-aware Learning Rate Schedules that prevent 

catastrophic forgetting after resuming from checkpoints. Xiang et al. [9] conducted extensive 

research on distributed ML training using preemptible resources, analyzing 21,378 GPU-hours of 

training across 143 production workloads. Their implementation of Ditto achieved remarkable 

resilience by combining checkpoint-based restoration with proactive node replacement, reducing 

effective training time by 34.7% compared to standard checkpoint recovery approaches. Their 

system, which continuously monitored GPU health metrics across 127 distinct nodes at 1-second 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)    

Vol. 7, Issue No. 18, pp. 1 - 11, 2025                                                         www.carijournals.org 

9 
 

    

intervals, demonstrated the ability to predict 78.3% of preemption events up to 87 seconds before 

occurrence. This predictive capability enabled proactive checkpoint triggering that reduced lost 

computation by 41.6% compared to fixed-interval checkpointing. Their detailed cost analysis 

revealed that a ResNet-50 training job on ImageNet could be completed for $49.73 using their 

preemptible approach, compared to $283.45 on equivalent on-demand instances, representing an 

82.5% cost reduction while extending total wall-clock time by only 13.7%. Most notably, their 

fault-tolerant parameter server architecture-maintained synchronization across dynamically 

changing worker pools, achieving 93.8% of ideal linear scaling despite worker count fluctuations 

between 8 and 64 GPUs during extended training sessions. Building on optimization for 

preemptible resources, Harlap et al. [10] introduced the Proteus system, specifically designed for 

training deep neural networks on volatile preemptible instances. Their research demonstrated that 

by implementing fine-grained task-based scheduling with intelligent work migration, training 

throughput could be maintained at 87.1% of maximum theoretical capacity despite preemption 

rates as high as 0.277 preemptions per GPU per hour. Their experiments with 1,024 preemptible 

GPU instances revealed that the optimal checkpointing strategy should adjust frequency based on 

observed volatility, with the system dynamically varying intervals between 121 seconds during 

stable periods and 43 seconds during high-volatility periods. The study quantified that their elastic 

learning rate schedule, which adjusted momentum accumulators proportionally to worker count 

changes, improved convergence by 27.5% compared to naive resumption strategies. Their most 

innovative contribution was a straggler mitigation technique that selectively replicated 

computation across potentially at-risk nodes, reducing the impact of cascading preemptions by 

63.8%. By analyzing 6 months of preemption patterns across three cloud providers, they 

established that maintaining just 8.7% of resources as on-demand "anchor nodes" while using 

preemptible instances for the remaining 91.3% provided the optimal balance between cost savings 

and training stability. 
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Table 4: 

Machine Learning Workload Optimization on Preemptible Resources 

Legend: This table outlines specialized techniques for optimizing machine learning workloads on 

preemptible resources, highlighting their implementation approaches, cost implications, and performance 

benefits. 

Conclusion 

The strategic utilization of preemptible computing resources represents a paradigm shift in data 

engineering workload design. By embracing the inherent constraints of these ephemeral resources 

through thoughtful architectural patterns, organizations can achieve remarkable cost efficiencies 

without compromising operational reliability. The reconceptualization of data processing 

workloads as collections of resilient, retriable units rather than monolithic pipelines enables 

enterprises to harness substantial economic advantages. For data engineering teams, migration to 

preemptible resource architectures offers compelling value, particularly for organizations 

operating at scale where cloud computing costs represent a significant portion of operational 

expenses. The most successful implementations demonstrate that these savings can be achieved 

while maintaining or even improving processing reliability through properly designed resilience 

mechanisms. As cloud providers continue to evolve their preemptible offering models and 

orchestration technologies mature, organizations developing expertise in designing resilient data 

processing architectures will gain competitive advantages through more cost-effective resource 

utilization, ultimately enabling greater data processing capabilities at reduced costs. Beyond mere 

cost savings, these architectural approaches foster a culture of resilience engineering that 

permeates throughout technical organizations, driving innovation in fault-tolerant system design 

across all infrastructure layers. The transformative impact extends into adjacent technical domains, 

where lessons learned from preemptible workload management inform everything from 

microservice architectures to edge computing deployments. Looking forward, the continued 

convergence of intelligent workload schedulers, predictive preemption modeling, and adaptive 

Technique Implementation Cost Reduction Performance Metrics 

Proactive Node 

Replacement 

Ditto system 82.50% 34.7% reduced training 

time 

Adaptive Checkpointing Dynamic intervals (43-

121 seconds) 

Part of the overall 

savings 

41.6% reduced lost 

computation 

Preemption Prediction GPU health monitoring Part of the overall 

savings 

78.3% prediction accuracy 

Task-based Scheduling Proteus system Part of the overall 

savings 

87.1% of the theoretical 

maximum throughput 

Elastic Learning Rate Momentum adjustment Part of the overall 

savings 

27.5% improved 

convergence 

Hybrid Resource 

Strategy 

8.7% on-demand, 91.3% 

preemptible 

Optimal cost-stability 

balance 

63.8% reduced preemption 

impact 
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resource management algorithms promises to further democratize access to high-performance 

computing resources, enabling even small organizations to leverage sophisticated data processing 

capabilities previously available only to entities with substantial infrastructure budgets. 
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