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ABSTRACT 

Purpose: This study aims to develop a cost-effective and pressure-resilient pipe replacement 

strategy for the Kawe District Metered Area (DMA) in Dar es Salaam, Tanzania, to improve 

hydraulic performance amid aging infrastructure and shifting demand in urban water networks. 

Methodology: A Multi-Objective Genetic Algorithm (MOGA) was used to generate pipe layouts 

balancing investment cost and hydraulic performance. Optimization and EPANET-based pressure 

evaluations were executed in Python for integrated modeling and analysis. Alternatives were 

screened using multi-criteria evaluation based on reliability, cost-efficiency and feasibility. 

Sensitivity analysis tested robustness under 10% demand growth and 30% cost escalation. 

Findings: The process yielded 38 Pareto-optimal layouts with nine selected for detailed review. 

All selected designs maintained minimum pressures above 5 m. The benchmark layout, involving 

two pipe replacements of total length of 0.409 km, achieved pressures of 9.87 m and 16.29 m at 

key junctions at a cost of TSh 19.08 million. Under sensitivity scenarios it sustained pressures 

above 8.66 m and 14.83 m without redesign. 

Unique Contribution to Theory, Policy and Practice: This study contributes a scalable, 

pressure-aware planning framework integrating hydraulic modeling with evolutionary 

optimization. Theoretically, it advances multi-criteria decision-making in water infrastructure 

design. Practically, it equips utility planners with a data-driven tool for cost-efficient reinforcement 

of urban water networks. Policy-wise, it supports strategic investment planning aligned with 

Sustainable Development Goal 6, promoting equitable and resilient water service delivery. 

Keywords: Water Distribution System, Multi-objective Genetic Algorithm, Hydraulic 

Performance, Sensitivity Analysis, Sustainable Development Goal 6, Kawe DMA, Python 
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1.0 Introduction 

In rapidly urbanizing cities such as Dar es Salaam, Tanzania, water distribution networks (WDNs) 

face mounting challenges due to aging infrastructure, fluctuating demand, and budget constraints. 

These issues often result in service inconsistencies, pressure losses, and unequal access to safe 

water particularly in underserved areas (World Bank, 2017; UN-Habitat, 2020). Addressing such 

challenges is central to Sustainable Development Goal (SDG) 6, and especially Target 6.1, which 

calls for “universal and equitable access to safe and affordable drinking water for all” (United 

Nations, 2015). 

Hydraulic modeling has become a central tool for evaluating and planning interventions in WDNs. 

These models simulate pressure, flow, and demand dynamics across the network, offering 

decision-makers a diagnostic lens to assess service gaps, identify critical nodes, and evaluate the 

impact of infrastructure upgrades. Widely adopted platforms such as EPANET allow detailed 

analysis under varying system conditions, including fluctuating demands and temporal supply 

constraints (Rossman, 1993). Traditionally, utility engineers have relied on trial-and-error methods 

to improve network configurations by adjusting variables and re-running simulations until 

acceptable performance thresholds are met. This process becomes inefficient as the number of 

decision variables such as pipe replacement segments and selections from commercial pipe 

diameters continues to grow (Wu & Simpson, 2001). 

To enhance planning, simulation–optimization frameworks integrate network modeling with 

computational algorithms to explore upgrade alternatives more efficiently (Mohan et al., 2007; 

Batista do Egito et al., 2023). Among these, Genetic Algorithms (GAs) are widely used for their 

flexibility in handling discrete, nonlinear problems (Goldberg, 1989; Savic & Walters, 1997), 

especially in scenarios involving pipe selection and budgetary trade-offs (Simpson et al., 1994; 

Dandy et al., 1996). Multi-objective GAs, in particular, generate Pareto-optimal designs that help 

planners balance cost and system performance (Farmani et al., 2005; Reca & Martínez, 2006). This 

study applies a MOGA-based optimization framework to the Kawe DMA in Dar es Salaam. Using 

hydraulic simulation and algorithm tuning, it identifies pipe replacement strategies that minimize 

cost while ensuring pressure and velocity compliance over a 24-hour cycle. The framework offers 

a replicable, data-driven approach to support practical utility planning and contribute to improved 

service delivery aligned with UN SDG 6. 

2.0  Materials and Methods 

2.1 Description of the Study Area 

Kawe DMA is a subzone of the Kawe Distribution networks in northern Dar es Salaam, Tanzania’s 

largest city, and operates under the Dar es Salaam Water and Sanitation Authority (DAWASA). 

Kawe DMA lies entirely within the Lower Ruvu Hydraulic Zone fed directly by the Lower Ruvu 

Water Treatment Plant (WTP)—and extends roughly from 6.72796° S, 39.217722° E in the 

northwest to 6.75031° S, 39.24355° E in the southeast. Elevations within the DMA range from 
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about 4 m at the low-lying coastal fringe to nearly 39 m in the inland upland areas, imparting 

significant hydraulic head variation across the network.  

Hydraulically, Kawe DMA is supplied through a single 54-inch trunk main equipped with an inline 

electromagnetic flow meter. The distribution network comprises 145 pipes totaling ~25 km in 

length, built from PVC (60%), steel (25%). Pipe diameters fall into three classes: 45–81 mm (70 

pipes), 82–102 mm (29 pipes), and 103–203 mm (46 pipes). The intended service level for the 

DMA is continuous 24-hour supply. However, pressure issues remain, especially in central zones 

The Kawe DMAs serves a diverse customer base, including 24 Commercial connections, 2384 

Domestic connections, 1 Industrial connection, and 237 Institutional connections, totaling 2649 

customers. The intended level of service in the DMA is 24-hours continuous supply, though 

operational challenges persist. Flow-meter data collected over seven days (January- April 2025) 

indicate an overall average hourly inflow of 35.82 L/s and an average daily peak of 36.88 L/s 

yielding a peak factor of 1.05 (for data of 17-23 February 2025). Figure 1 shows the geographic 

extent of Kawe DMA within Dar es Salaam and its principal hydraulic features. 
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2.2 Data Preparation and Hydraulic Model Calibration  

Data obtained from DAWASA included the water distribution map, global hydraulic model, 

georeferenced customer records (July 2024–March 2025), 15-minute inlet flow and pressure data, 

and recent pipe and valve upgrade logs. Customer billing, survey, and registry records were 

cleaned and integrated in QGIS to build a unified DMA geodatabase. GIS layers pipes, valves, 

pumps, and boundaries were extracted and topologically validated. Baseline, NRW, and average 

demands (July 2024–February 2025) were allocated to nearby pipes and junctions. The EPANET 

hydraulic model was calibrated using field data to ensure realistic pre-optimization behavior. 

 

 

  

Figure 1: Map of Tanzania, Dar es Salaam showing Kawe District Metered Areas 

boundary and its water Distributing networks including Spatial customer location. 
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2.3 Simulation–Optimization of Water Supply Network. 

This study employed a simulation–optimization framework designed to minimize total pipe 

replacement costs while ensuring hydraulic performance within regulatory bounds over a 24-hour 

extended period. A Multi-Objective Genetic Algorithm (MOGA) was deployed in Python, 

interfacing with the EPANET 2.2 hydraulic engine through PyEPANET. Chromosomes encoded 

commercial pipe diameter configurations for segments identified for replacement. Hourly 

hydraulic simulations were carried out across the extended-period horizon to evaluate nodal 

pressures and pipe velocities against acceptable limits of 5.0–50.0 m and 0.3–2.0 m/s, respectively.  

The GA approach aligns with prior applications in water infrastructure optimization, notably the 

GANET model introduced by Savic and Walters (1997), which leveraged evolutionary algorithms 

for pipe network design. This was further enhanced by Vairavamoorthy and Ali (2000), who 

addressed pipe sizing under operational constraints. Chromosome evaluation was guided by hourly 

hydraulic outputs, with pressure and velocity compared against thresholds using penalty structures 

originally proposed by Wu and Simpson (2001). These dynamic penalty mechanisms were adopted 

following the methodology of Sangroula et al. (2022), who demonstrated that adaptive scaling 

facilitates improved convergence and robustness in pressure-sensitive networks. A composite 

objective function was formulated to guide the optimization. It minimized a combination of pipe 

replacement costs and time-varying penalty terms associated with constraint violations.  Penalty 

coefficients were defined using a structured scaling approach, wherein pressures below 5.0 m were 

penalized using αₚ = 109, pressures above 50.0 m with αₚ = 106, and all velocity violations with 

αᵥ = 5 × 107. The full objective function and penalty terms are defined in equation 1. 

Min f (D) = ∑ ci(Di, Li)n
i=1 + ∑ (∑ 𝚿j, tk

k=1 + ∑ 𝛟k, tk
k=1 )

24

t=0
……………. Equation 1 

The pressure penalty function Ψ (j, t) were defined using scaling coefficient as in Equation 2 

 

The corresponding velocity penalty function Φ (k, t) were defined as provided in Equations 3 

 

Ψ(j, t) = 

109 × (5 − Pⱼ,ₜ)², if Pⱼ,ₜ < 5 

106 × (Pⱼ,ₜ − 50)², if Pⱼ,ₜ > 60 

   0,   otherwise 

……………….Equation 2 

 

     

  Φ (k,t)= 

 

5×107 × (0.3 − Vₖ,ₜ)², if Vₖ,ₜ < 0.3 

5×107 × (Vₖ,ₜ − 2.0)²,  if Vₖ,ₜ > 2.0 

0,    otherwise 

……………. Equation 3 
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In this formulation, D= {D1, D2... Dn} denotes the set of decision variables representing discrete 

commercial pipe diameters. Ci (Di, Li) is the replacement cost per meter of pipe i, based on diameter 

Di and length Li.  Φ (k, t) and Ψ (j, t) are applied penalty for pressure penalty 𝑗,𝑡
𝑝

 and velocity 

penalty 𝑘,𝑡
𝑣

 at junction j and pipe k at time step t, respectively. 

2.4 Evolutionary Configuration and Sensitivity Analysis 

To balance cost minimization and hydraulic reliability in the Kawe DMA, the Multi-Objective 

Genetic Algorithm (MOGA) employed a Pareto-based selection mechanism utilizing fast non-

dominated sorting. This approach maintained population diversity across competing hydraulic and 

financial objectives. An adaptive mutation operator was incorporated to preserve exploratory 

momentum: mutation intensity was incremented by 0.2 upon detection of stagnation in objective 

improvements over successive generations. Network design options were constrained to five 

commercially available pipe diameters, selected based on local procurement standards. These were 

referenced via a predefined cost lookup table, as shown in Table 1. 

Table 1. Commercial Pipe Diameters and Unit Costs 

S/N Diameter (mm) Unit Cost (TSh/m) 

1 81.4 15,000 

2 101.6 25,000 

3 147.6 30,000 

4 152.4 40,000 

5 203.2 50,000 

 

To assess the impact of algorithmic parameters on optimization outcomes, eight configurations of 

MOGA were executed. Each scenario was run over 150 generations, with specific variations in 

population size, mutation rate, and crossover probability detailed in Table 2. 

Table 2. Multi-Objective Genetic Algorithm Optimization Scenarios 

Scenario Population Mutation Rate Crossover Rate 

1 150 0.10 0.80 

2 150 0.10 0.85 

3 150 0.15 0.80 

4 150 0.15 0.85 

5 200 0.10 0.80 

6 200 0.10 0.85 

7 200 0.15 0.80 

8 200 0.15 0.85 
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Sensitivity analysis was conducted to assess the adaptability and effectiveness of each 

configuration. Performance metrics included total replacement cost, penalty magnitude, and 

compliance with hydraulic constraints, Pareto front diversity, and fitness convergence trends. 

Additionally, constraint clearance timing and mutation impact dynamics were monitored 

throughout the simulation horizon. The adopted MOGA framework, inspired by evolutionary 

principles and supported by literature on Pareto-based selection (Sangroula et al., 2022), was 

intended to efficiently explore trade-offs between cost efficiency and service reliability in complex 

water distribution planning tasks for this DMA. 

2.5 Post-Optimization Evaluation and Hydraulic Sensitivity Analysis 

Post-optimization hydraulic assessments were conducted on selected network layouts using 

EPANET's Extended Period Simulation (EPS) across a full 24-hour demand cycle. Key 

performance metrics included average and minimum nodal pressures, pressure distribution range, 

and total penalty cost ensuring temporal stability under realistic demand conditions. Spatial 

behavior was evaluated via hourly pressure tracking at representative junctions to assess localized 

resilience and sensitivity. Design robustness was compared across normal and elevated demand 

scenarios, supporting identification of implementation-ready layouts. Pressure trends, penalty 

reductions, and cost efficiency were jointly reviewed to guide decisions on phasing and 

infrastructure upgrades. 

2.6  Optimization and Genetic Algorithm Workflow 

The optimization process for Kawe DMA integrated EPANET-based hydraulic simulation with a 

multi-objective Genetic Algorithm (GA). This approach aligns with established methodologies in 

water network optimization, as demonstrated by Deb et al. (2002) in evolutionary multi-objective 

frameworks and Farmani et al. (2005) in Pareto-based hydraulic design. More recent applications, 

such as Sangroula et al. (2022) and Kumar & Pramada (2023), have reinforced the effectiveness 

of simulation–optimization coupling for pressure-sensitive networks and cost-efficient planning. 

The complete workflow is illustrated in Figure 2, which summarizes the sequence from model 

setup to final layout validation. 
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Figure 2: Modular optimization workflow integrating EPANET hydraulic simulation with multi-

objective Genetic Algorithm. 

3.0 RESULT AND DISCUSSION 

3.1 Convergence Behavior and Performance Analysis  

Convergence analysis across all eight GA configurations revealed a consistent two-phase 

trajectory—rapid early reduction in replacement cost followed by stabilization or divergence, 

depending on operator dynamics. Most scenarios achieved the elite solution of TSh 19.08 × 10⁶ by 

Generation 5, indicating strong early-stage targeting. As shown in Table 3, Scenarios 1–3 and 8 

preserved elite layouts across more than 97% of generations, supported by low mutation rates 

(0.10–0.15) and moderate crossover probabilities (0.80–0.85). Scenario 5 combined early 

feasibility with over 60 elite reappearances, while Scenario 6 showed drift beyond Generation 51. 

Scenario 4 exhibited early instability due to excessive crossover without sufficient mutation 

control. These outcomes validate the conclusion that convergence stability improves under 

selective pressure, low mutation intensity, and strong elitism—consistent with observations by 

1. Model Initialization

Load Calibrated 
Hydraulic Model (.inp)

2. Define Decision Variable

 pipe diameter options 

 Fixed pipes and series 
constraints 

3. Configure Genetic 
Algorithm 

Set evolutionary 
parameters: population size, 
mutation rate, crossover and 
generation count.

4. Chromosome Encoding

Encode candidate 
solutions with diameter 
assignments Simulate 24-
hour hydraulic performance

extract nodal pressures 
and pipe velocities per 
timestep.

5. Fitness Evaluation

 Compute total 
replacement cost 

 apply penalty functions 
for pressure and velocity 
violations.

6. Evolutionary Operators

Apply selection, 
crossover, and mutation to 
evolve population; 
use Pareto sorting in 
multi-objective runs.

7. Iterative Evolution Loop

Loop Until Convergence or 
Max Generations Reached

───▶ Return to Step 5 
with updated population 

◀───

8. GA Analysis 

 Fitness convergence plots 

Pareto front: Cost vs. 
Avg. Pressure 

Post-Optimization Analysis

 conduct pressure 
diagnostics 

scenario sensitivity 
checks.
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Hassanat et al. (2019) and Patil & Pawar (2015), who emphasized structural preservation in multi-

objective GA design. 

Table 3: Summary of GA Configurations and Performance Metrics 

 

3.1.1 Total Cost Convergence Profile across Scenarios  

Total cost trajectories across the eight GA configurations revealed varied convergence behavior 

driven by mutation rate, crossover probability, and population size. Scenarios using mutation = 

0.10 namely Scenarios 1, 2, 5, and 6 exhibited the most reliable cost stabilization. Scenario 5 (Pop 

= 200, Cross = 0.8) achieved the target cost of TSh 1.6238 × 10¹¹ by Generation 5, maintaining it 

across 145 of 150 generations (96.7%) with minimal rebound. Similarly, Scenario 6 stabilized by 

Generation 4 and retained cost for 95.3% of the run, with brief post-plateau deviation. Scenario 1 

achieved convergence by Generation 3 and held feasibility across >80% of generations, despite 

temporary spikes near Generation 135. Scenario 2 retained elite performance in >85% of 

generations, though minor fluctuations were noted during mid-phase evolution. 

Scenarios configured with mutation = 0.15 revealed more variability, especially under higher 

crossover rates. Scenario 3 reached feasibility early and sustained the optimal cost over most 

generations, though rebounds occurred between Generations 70–82, peaking near 

TSh 1.6258 × 10¹¹. Scenario 4, despite early convergence, showed weak retention after 

Generation 30, with repeated surges reaching TSh 1.4438 × 10¹¹, indicating structural instability 

due to high crossover and limited selection control. In contrast, Scenarios 7 and 8 (Pop = 200, Mut 

= 0.15) performed favorably under well-calibrated settings. Scenario 7 maintained cost feasibility 

in 94.0% of generations, with frequent elite reappearances despite intermittent volatility. 

Scenario 8 yielded the most stable outcome, attaining TSh 1.6238 × 10¹¹ by Generation 4 and 

preserving it for 147 consecutive generations (98%) without penalty drift. These results underscore 

the convergence advantage of pairing moderate mutation with large population size and balanced 

crossover. 

Scenario  Final Cost (TSh) Elite Stability  Penalty Cleared  Stability 

1  20.50 × 10⁶ Gen 3–150 (98.7%) Generation 3 Very High 

2  20.50 × 10⁶ Gen 3–150 (98.7%) Generation 3 Very High 

3  20.50 × 10⁶ Gen 5–150 (97.3%) Generation 5 Very High 

4  20.50 × 10⁶ Gen 4–30 (18.0%) Generation 4 Moderate 

5  19.08 × 10⁶ Gen 5–50 (30.7%) Generation 5 High 

6  20.82 × 10⁶ Gen 4–51 (32.0%) Generation 4 Moderate 

7  20.50 × 10⁶ Gen 3–150 (98.7%) Generation 3 Very High 

8  19.08 × 10⁶ Gen 4–150 (98.0%) Generation 4 Very High 
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As illustrated in Figure 3, Scenarios 1, 2, 5, 6, 7, and 8 exemplify strong generational stability and 

elite cost control, confirming the utility of calibrated GA parameters in WDN optimization. The 

trends align with insights from Hassanat et al. (2019) and Patil & Pawar (2015) on the role of 

mutation moderation and crossover design in sustaining elite retention. By contrast, 

underperforming configurations such as Scenario 4 lacked sufficient structural preservation, 

compromising long-term feasibility. These findings reinforce the methodological soundness of the 

selected design space for cost-efficient pressure-sensitive system planning. 

 

Figure 3: Total cost convergence across eight GA configurations for Kawe DMA optimization. 

3.1.2 Replacement Cost Convergence Profile across Scenarios 

Replacement cost convergence across the eight GA configurations demonstrated strong early-stage 

stabilization, with most scenarios reaching the optimal benchmark of TSh 19.08 × 10⁶ within the 

first five generations. Scenario 8 (Pop = 200, Mut = 0.15, Cross = 0.85) delivered the highest level 

of structural retention—achieving the elite replacement cost by Generation 4 and maintaining it 

across 147 out of 150 generations (98%). No observable perturbations occurred throughout the 

simulation, confirming exceptional convergence stability. Likewise, Scenario 5 (Pop = 200, Mut 

= 0.10, Cross = 0.80) attained TSh 19.08 × 10⁶ by Generation 5 and preserved this value through 

34 uninterrupted generations, with repeated elite recoveries totaling 63 generations, despite 

transient spikes between Generations 94–107. 

Scenario 6 demonstrated a stable plateau from Generation 4 to 51, followed by moderate variation 

and a final cost of TSh 20.82 × 10⁶. Early convergence was also observed in Scenarios 1, 2, and 3, 
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which each reached elite cost by Generation 3–5. Notably, Scenario 1 retained stability for >80% 

of the run, while Scenario 2 held until Generation 80 with intermittent rebounds. Scenario 3 

maintained the target value until Generation 69, then showed short-lived deviations. Scenario 4, 

however, diverged post-Generation 30, peaking at TSh 23.02 × 10⁶ with reduced layout retention. 

The comparative behaviors of Scenarios 7 and 8, both configured with mutation = 0.15 and 

population = 200, illustrate the nuanced interplay between diversity and structural control. 

Scenario 7 achieved elite cost by Generation 3, held it for ~22 generations, and recorded ~18 elite 

recoveries afterward, despite replacement cost surges up to TSh 23.02 × 10⁶ at Generation 42. 

Scenario 8, by contrast, sustained elite convergence uninterrupted, achieving the most stable 

trajectory among all configurations. These patterns reinforce convergence models proposed by 

Hassanat et al. (2019) and Patil & Pawar (2015), highlighting how tuning mutation and crossover 

rates enhances elite preservation and suppresses structural volatility in pressure-sensitive WDN 

optimization. 

 

Figure 4: Replacement cost convergence behavior across eight GA scenarios.  

3.2 Trade-Off Analysis between Optimized Cost and Hydraulic Penalty 

To assess the investment–reliability trade-off in Kawe DMA, Pareto fronts were extracted from 

the final generation of each GA scenario based on NSGA-II principles (Deb et al., 2002). Table 2 

summarizes 38 hydraulically feasible, non-dominated pipe layouts identified across eight 

configurations. Lower mutation scenarios (1, 2, and 5) exhibited denser trade-offs, stable 

convergence, and well-distributed fronts. Scenario 5 yielded eight cost-efficient layouts with wide 
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variation; Scenario 2 produced designs from TSh 20.5M to TSh 36.6M. Scenario 1 provided five 

moderate options with compact diversity. By contrast, higher mutation settings (4, 7, and 8) led to 

narrow fronts with limited variation. Scenario 8 had the lowest-cost layout (TSh 19.08M) but just 

two solutions. 

The solution space spans both performance-optimized and budget-sensitive layouts, enabling 

flexible reinforcement planning. Broad fronts like Scenario 5 reveal strong exploratory potential, 

supported by larger populations and well-tuned operators. Narrow yet feasible fronts in Scenarios 

3 and 7 reflect controlled convergence with minimal structural overhead. These patterns reaffirm 

findings from Farmani et al. (2005) and Reed et al. (2013), emphasizing how mutation intensity 

and elite retention shape diversity and trade-off geometry. GA configurations with mutation rates 

of 0.10–0.15 and crossover values of 0.80–0.85 consistently yielded hydraulically compliant, cost-

aware layouts. Table 4 summarizes these characteristics, providing planners with adaptable, 

investment-conscious options aligned with system constraints. 

Table 4: Pareto Front Characteristics across Genetic Algorithm Scenarios 

Scenario Pop–Mut–Cross Pareto 

Solutions 

Cost Range (TSh) Observation 

1 150–0.15–0.8 6 20.5M–36.6M Broad but structurally strong 

2 150–0.15–0.85 5 19.5M–27.6M Compact and low-cost front 

3 150–0.2–0.8 4 21.1M–30.6M Sparse, influenced by mutation 

4 150–0.2–0.85 8 19.5M–43.7M Wide diversity, highest spread 

5 200–0.15–0.8 5 20.8M–29.4M Balanced cost–penalty zone 

6 200–0.15–0.85 3 21.3M–24.0M Narrow front, lower diversity 

7 200–0.2–0.8 2 19.08M–22.2M Lowest replacement cost  

8 200–0.2–0.85 6 20.5M–36.6M Broad but structurally strong 

 

3.3 Post-Optimization Evaluation of Selected Design Alternatives 

While the multi-objective optimization framework produced 38 Pareto-optimal configurations 

across eight GA scenarios, utility planning requires the adoption of reference designs that balance 

cost, hydraulic benefit, and feasibility. Accordingly, a curated subset of nine alternatives was 

selected for post-evaluation, comprising eight knee-point layouts representing strategic trade-offs 

and one minimal-cost baseline derived from Scenario 8.  

3.3.1 Pressure–Cost Trade-Offs 

Performance comparisons across the nine optimized design alternatives revealed clear trade-offs 

between replacement cost, pressure reliability, and penalty resolution. As shown in Figure 4, all 

configurations surpassed the minimum pressure threshold of 10 m, ensuring continuous service 

across the Kawe DMA. The highest-performing layouts in terms of pressure outputs were 
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Alternative 1 and Alternative 2, with average pressures of 21.224 m and 21.225 m, and minimum 

pressures of 9.790 m and 9.780 m, respectively. These alternatives also incurred the highest 

penalty costs, exceeding TSh 162.4 billion, indicating significant constraint intensity despite 

strong hydraulic stability. Alternative 3, with an investment cost of TSh 20.88 million, achieved 

an average pressure of 21.170 m and a minimum of 9.770 m, reflecting good reliability at a mid-

range budget.  

Alternatives 4, 5, and 6 maintained pressure levels between 21.177 m and 21.219 m, with 

minimum pressures of 9.770–9.780 m and costs between TSh 22.68 million and 24.37 million. 

These layouts showed stable performance profiles under moderate cost inputs. Alternative 7 and 

Alternative 8, at roughly TSh 21.31 million and TSh 22.24 million, respectively, returned average 

pressures around 21.172–21.171 m and minimum values of 9.770 m, maintaining pressure 

compliance with modest variation. Most notably, Alternative 9 achieved full feasibility with the 

lowest cost TSh 19.08 million, 21.167 m average pressure, and a penalty of TSh 162.39 billion. It 

presents a cost-effective option suitable for phased upgrades. 
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Figure 4: Relationship between pressure, replacement cost, and constraint penalty for all nine 

optimized alternatives. 

3.3.2 water supply System Pressure Behavior over Time 

Over the 24-hour EPS cycle, pressure patterns across the nine optimized layouts demonstrated strong 

and consistent hydraulic performance. The lowest recorded junction pressure was 9.770 m, observed 

in Alternatives 3, 4, 7, 8, and 9, while Alternative 1 maintained the highest minimum pressure of 

9.790 m, affirming full compliance with the 10 m service threshold. When examining average 

minimum nodal pressures, Alternative 1 again led at 11.253 m, followed by Alternative 2 (11.244 m), 

with the lowest value—11.226 m—from the baseline layout (Alternative 9), which still surpassed 

operational requirements. 

Average system pressures showed remarkable convergence across all alternatives, ranging narrowly 

between 21.167 m (Alternative 9) and 21.225 m (Alternative 2). Alternatives 1 and 2 delivered the 

most favorable averages (21.224–21.225 m), with Alternative 5 close behind at 21.219 m. Standard 

deviation values were clustered near zero across all junctions, indicating strong spatial uniformity. 

Only a few localized nodes exhibited slightly elevated variability, which is typical of demand-driven 

fluctuations and layout geometry. As shown in Figure 4, the full scatter of nodal pressures illustrates 

temporal and spatial stability, with most readings concentrated between 21–23 m. No layout exhibited 

pressure below 9.770 m at any point, confirming that all nine configurations deliver reliable service 

under daily demand conditions. 
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Figure 5: Scatter of all nodal pressures over time across the 24-hour EPS for all optimized layouts. 

Each point represents a junction’s pressure at a given hour. 

3.3.3 Pressure behavior at Critical Nodes under Baseline Conditions 

To evaluate local pressure restoration under baseline conditions, pressure performance was assessed 

at two hydraulically significant nodes: Junction 356, located at the network periphery, and Junction 

5410, positioned internally with previously suboptimal delivery. The baseline network recorded 

average pressures of 2.35 m and 8.77 m, with minimums dropping to 0.44 m and 6.76 m—well below 

acceptable service thresholds. These deficiencies reflected insufficient head during peak periods and 

broader system imbalance. Following optimization, all nine design alternatives restored compliant 

delivery. At Junction 356, average pressures rose to 11.35–11.46 m, and minimums to 9.87–9.97m 

indicating substantial recovery at the network’s edge. Junction 5410 achieved averages between 17.77–

17.85 m, with minimums from 16.29–16.36 m, confirming robust pressure stabilization internally. 

Table 5 illustrates the improvement in average pressure at both nodes across all optimized designs. 
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Table 5: Pressure Performance at Junction 356 and Junction 5410 Before and After 

Optimization 

Configuration Junction Avg. Pressure (m) Min. Pressure (m) 

Initial Baseline Network Junction 356 2.35 0.44 

Junction 5410 8.77 6.76 

Alternative 1 Junction 356 11.46 9.97 

Junction 5410 17.85 16.36 

Alternative 2 Junction 356 11.43 9.95 

Junction 5410 17.84 16.35 

Alternative 3 Junction 356 11.36 9.87 

Junction 5410 17.78 16.29 

Alternative 4 Junction 356 11.38 9.89 

Junction 5410 17.79 16.30 

Alternative 5 Junction 356 11.41 9.93 

Junction 5410 17.83 16.34 

Alternative 6 Junction 356 11.40 9.91 

Junction 5410 17.79 16.30 

Alternative 7 Junction 356 11.36 9.88 

Junction 5410 17.78 16.29 

Alternative 8 Junction 356 11.37 9.88 

Junction 5410 17.78 16.29 

Alternative 9                                     Junction 356 11.35 9.87 

Junction 5410 17.77 16.29 

 

3.3.4 Sensitivity to Demand and Cost Variations 

To assess the robustness of the optimized alternatives under uncertainty, two sensitivity scenarios were 

evaluated: a +10% increase in billed demand and a +30% rise in pipe unit costs. All nine layouts 

remained hydraulically compliant under elevated demand. Pressures at Junction 356 declined from 

11.35–11.46 m to 8.66–8.79 m, but minimums pressure stayed above 7.14 m. Internally, Junction 5410 

showed greater stability, with pressures decreasing from 17.77–17.85 m to 14.83–14.91 m and 

minimums remaining above 13.19 m. 

These behaviors are visualized in Figure 6, comparing average pressure profiles under baseline and 

scaled demand. While Junction 356 exhibited higher sensitivity, both nodes retained safe pressure 

margins well above the 5 m threshold. In parallel, a 30% increase in unit costs raised capital estimates 

from TSh 24.8 million (Alt9) to TSh 34.7 million (Alt1) without affecting hydraulic layout or service 

delivery. This confirms that the optimized configurations are both technically stable and economically 

flexible under moderate uncertainty. These findings reinforce Page, P. R. (2006) affirming that 
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pressure-optimized systems maintain viability amid demand and cost shifts. Overall, the results 

confirm that all nine solutions offer planners robust, adaptable, and pressure-compliant designs under 

variable conditions. 

 

Figure 6: Average pressure response at Junction 356 and Junction 5410 under baseline and +10% 

demand conditions for all optimized alternatives. 

3.3.5 Baseline Configuration as a Benchmark for Optimized Network Design 

An optimization-based assessment produced 38 Pareto-optimal layouts for Kawe DMA. From these, 

nine were selected for post-evaluation based on hydraulic feasibility, structural diversity, and 

convergence traits. Two standout designs from Scenario 8 emerged one maximizing hydraulic 

enhancement, the other favoring cost efficiency. The first was the knee-point layout (alternative 8 as 

in Table 5) which achieved early convergence and sustained dominance across 150 generations. It 

involved four pipe replacements totaling 0.535 km, with a cost of TSh 22.24 million and a residual 

penalty of 1.6236 × 10¹¹ TSh-equivalent. While hydraulically robust, its higher investment 

requirement made it less suitable for immediate implementation. The second and ultimately adopted 

baseline configuration (alternative 9 in Table 5) includes two targeted interventions totaling 0.409 km, 

with diameter enhancements from 147.6 mm to 203.2 mm and 76.6 mm to 81.4 mm as shown in Table 

6. This layout achieved full hydraulic feasibility at the lowest recorded cost of TSh 19.08 million, 

while retaining the structural integrity and generational stability of its parent design. Its simplicity 

and cost-effectiveness make it the preferred benchmark for phased rehabilitation planning in Kawe 

DMA. 

Comparable studies have demonstrated the effectiveness of multi-objective optimization approaches 

and parameter-sensitive algorithms in achieving balanced water network designs. Dandy et al. (1996) 
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and Savic & Walters (1997) demonstrated that genetic algorithms can yield reliable, budget-conscious 

designs. Zhu et al. (2023) achieved a 37.4–64.6% reduction in scattered pipe replacements using 

spatial clustering, and Kumar & Pramada (2023) confirmed that well-tuned genetic parameters 

enhance convergence and layout stability resulted in robust network designs. These findings align 

with the results in Kawe DMA, where the adopted baseline layout achieved full hydraulic feasibility 

at the lowest recorded cost. These results confirm that Kawe DMA can achieve reliable and spatially 

balanced service delivery through focused infrastructure interventions.  

Table 6:  specifications of baseline configuration 

Configuration  Pipe ID Existing Ø (mm) Optimized Ø (mm) Length (m) 

Baseline ( Alternative 9) 
Pipe_1757 147.6 203.2 370.0 

Pipe_31 76.6 81.4 38.5 

 

4. Conclusion and Recommendation. 

This study provided 38 Pareto-optimal layouts through a multi-objective genetic algorithm to 

optimize pipe replacement strategies within the Kawe District Metered Area (DMA) in Dar es 

Salaam, Tanzania. Nine representative alternatives were selected for post-evaluation, all showing 

substantial hydraulic improvements under baseline conditions with pressures above 5 m. one design 

Alternative derived from Scenario 8, was selected as the final benchmark layout. It involved two 

targeted pipe replacements totaling 0.409 km and achieved minimum pressures of 9.87 m and 

16.29 m at key junctions, with the lowest investment cost of TSh 19.08 million. 

Sensitivity analysis confirmed that all nine layouts remained hydraulically compliant under elevated 

demand and cost scenarios. Under a 10% increase in billed demand, minimum pressures at 

Junction 356 and Junction 5410 remained above the 5 m threshold. For the alternative selected as 

benchmark pressures declined to 8.66 m and 14.83 m, maintaining resilience. A 30% rise in pipe 

unit costs increased its capital estimate to TSh 24.80 million, but no reconfiguration was required. 

These findings reflect strong adaptability and technical stability under uncertainty. 

Based on these results, phased implementation of baseline alternative is recommended, starting with 

priority interventions to recover pressure cost-effectively. Hydraulic monitoring should be 

introduced post-rehabilitation, and the optimization methodology extended to other DMAs with 

similar constraints. Embracing algorithm-based planning will support strategic investments, 

enhance system resilience, and contribute to Sustainable Development Goal 6 by advancing 

equitable and reliable access to clean water. 
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