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Abstract  

Purpose:  The purpose of the study is to model and simulate the trends and behavioral patterns in 

The Nigerian Stock Market and hence predict the future stock prices within the Geometric 

Brownian Motion (GBM) framework. 

Methodology: The methodology involves a comparison of forecasted daily closing prices to actual 

prices in order to evaluate the accuracy of the prediction model. Based on the model assumptions 

of the GBM with drift: continuity, normality and Markov tendency, the study investigated four 

years (2015 - 2018) of historical closing prices of ten stocks listed on The Nigerian Stock 

Exchange. The sample for this study is based on the most continuously traded stocks. 

Findings: The results show that in the simulation there are some actual stock prices located outside 

trajectory realization that may be from GBM model. Thus, the model did not predict accurately 

the price behavior of some of the listed stocks.  The predictive power of the model is declining 

towards the longer the evaluated time frame proven by the higher value of the mean absolute 

percentage error. The value of the MAPE is 50% and below for the one- to two-year holding 

periods, and above 50% for the three-year holding period.  

Unique Contribution to theory, Practice and Policy:  The MAPE and directional prediction 

accuracy method provide support that over short periods the GBM model is accurate. Meaning 

that the GBM is a reasonable predictive model for one or two years, but for three years, therefore, 

it is an inaccurate predictor. It is recommended that the technical analyst whose primary motive is 

to make gain at the expense of other participants should identify high volatile portfolio in any 

holding period for effective prediction Investors with long-range holding position as investment 

strategy should concentrate more on low capitalized stocks rather than stocks with large market 

capitalization. This is a unique contribution to theory, practice and policy.   

Keyword: Stochastic forecasting, Geometric Brownian motion, Stock return, The Nigerian stock 

 Exchange 
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1. Introduction  

The stock market is the meeting place of both buyers and sellers (wider domain of trading 

activities) of stocks. It is a platform for investors to own shares of companies. The stock price is 

always fluctuating (constantly changing), and investors seek to know the future price of their 

investment and the risk associated with this investment. This motivation is understandable since 

they demand the certain return of their investment (Bohdalova and Gregus, 2012). 

 

Forecasting is the best method to know the future price of a stock (Omar and Jaffar, 2014). To 

forecast is to form an expectation of what will happen in the future. Two common approaches to 

predicting stock prices are those based on the theory of technical analysis and those based on the 

theory of fundamental analysis (Fama, 1995). Fundamental analysis assumes that the price of a 

stock depends on the intrinsic value and expected return on investment; while the technical 

analysis studies the price movement of a stock and predicts its future price movement (uses past 

stock prices and volumes); history will repeat itself. 

There are alternative approaches to the forecasting of stock prices, e.g., the Random Walk Theory. 

The Random Walk Theory is the idea that stocks prices take a random and unpredictable path, 

making it near impossible to outperform the market without assuming additional risk (Fama, 1970; 

1991).  

 

This random (zig-zag) movements of stock prices is referred to in finance as Brownian motion; 

and the Brownian motion model is used to capture the uncertainty in the returns of risky assets, 

(Bachelier,(1900; Maraddin and Trimono, 2018;Reddy and Clinton, 2016). Modeling stock price 

changes with Stochastic Differential Equation (SDE) leads to Geometric Brownian Motion (GBM) 

model (Samuelson, 1965).  

 

The return on the risky asset, however, is uncertain; and this uncertainty or randomness is claimed 

to be captured by the Brownian motion models. Recent findings (mostly in developed countries) 

have shown that the GBM model is unable to capture some features including long range 

correlations and heavy-tailed distributions (Brigo, et al. 2007) and does not account for periods of 

constant values (Gadja & Wylomanska, 2012). We therefore sought to know if the GBM model as 

a stochastic Markov process, can be accurate when used to model and forecast future stock prices 

in The Nigeria stock Exchange.  

The purpose of the study is to model and simulate the trends and behavioral patterns in The 

Nigerian Stock Market and hence predict the future stock prices within the Geometric Brownian 

Motion (GBM) framework. The specific objectives can be summarized as follows: (i) To 

investigate the extent in which the actual prices of individual stocks differ from those that are 

simulated using GBM model  over the sample period; (ii) the relationship between actual and 

simulated prices for portfolios classified by volatility; (iii) the relationship between actual and 

simulated stock prices for portfolios classified by expected return; and (iv) the relationship 

between actual and simulated prices for portfolios classified by market capital. The hypotheses to 

be tested for the stock returns are the following: (1) the actual prices of the individual stocks are 

not significantly different from the simulated using GBM over the sample period; (2) there is no 

significant relationship between actual and  predicted prices for portfolios classified by volatility; 
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(3) there is no significant relationship between actual and predicted prices for portfolios classified 

by expected return; and  (4) there is no significant relationship between actual and predicted 

prices for portfolios classified by market capital. 

The remainder of the paper is organized as follows: section 2 is the literature review, and section 

3 describes the data and methodology. Section 4 shows the analysis and results while Section 5 

offers some concluding remarks.  

  

Overview of the Nigerian Capital Market  

The Nigerian Capital Market is a channel of mobilizing long-term funds by providing mechanism 

for private and public savings through financial instruments (equities, debentures, bonds and 

stocks) with major components consisting of the Security and Exchange Commission (SEC) and 

the Nigerian Stock Exchange (NSE). Founded in 1960, the NSE is the second largest market in 

sub-Saharan Africa with fully automated exchange that provides the listing and trading services as 

well as electronic Clearing, Settlement and Delivery (CSD) services through Central Securities 

Clearing System (CSCS). The exchange keeps on evolving as a competitive market and meeting 

the needs of investors. It operates fair, orderly and transparent markets with over 200 listed equities 

and 258 listed securities, and had attracted the best of African enterprises as well as the local and 

global investors (NSE, 2013). The market has become an integral part of the global economy such 

that any shock in the market has contagious consequences. Moreover, the Nigeria’s capital market 

has enjoyed a decade of unprecedented growth. The market capitalization increased by over 90.0% 

from 2003 to 2008. However, from a peak in March 2008, the market capitalization went declined 

spirally by about 46% in 2009 (SEC Report, 2009). The convergence of global economy makes 

all countries and all markets sensible to the happenings in other countries (the contagious effect). 

The 2008 global financial meltdown originated from the United States of America (USA) had 

varying degree of impacts on different capital markets in various countries. This situation is 

compounded with the continuous volatility in the global oil price which in theory adversely and 

significantly affecting capital markets (Njiforti, 2015; Asaolu and Ilo, 2016). Nigeria recently 

experienced economic recession as a consequence of the 2014-2016 global oil price downturn. In 

view of these, the various  Security and Exchange Commission (SEC) reports came with several 

recommendations to reposition the Market as a world class institution. The main recommendations 

are; the development of an enforcement framework to prevent market manipulation, and the 

establishment of principles for risk management for capital market operators.  

 

The Nigerian Stock Exchange (“The Exchange” or “NSE”) operates fully electronic marketplaces 

for Equities, Bonds, Exchange Traded Products, with plans to include Derivatives trading shortly. 

The NSE operates an Automated Trading System (ATS) platform with a central order book which 

allows Dealing Members to participate on equal terms, competing on the hierarchical basis of 

Price, Cross and Time priority. The Exchange runs a hybrid market, allowing Dealing Members 

to submit orders and Market Makers to submit two-sided quotes into the order book (NSE, 2019). 
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2. Literature Review 

2.1 The concept of Brownian motion 

The stock markets in the recent past have become an integral part of the global economy. 

Any fluctuation in this market influences our personal and corporate financial lives, and the 

economic health of a country. The stock market has always been one of the most popular 

investments due to its high returns (Kuo, Lee and Lee, 1996; Hassan and Nath, 2005). However, 

there is always some risk to investment in the Stock market due to its unpredictable behaviour. So, 

an ‘intelligent’ prediction model for stock market forecasting would be highly desirable and would 

be of wider interest. Reliable prediction of stock prices could offer enormous profit opportunities 

in reward and proactive risk management decisions. This quest has prompted researchers, in both 

industry and academia to find a way past the problems like volatility, seasonality and dependence 

on time, economies and rest of the market.  

 

The name Brownian motion derives from a very different route. In science it is given to 

the irregular movement of microscopic particles suspended in a liquid (in honour of the careful 

observations of the Scottish botanist Robert Brown, published in 1827). Einstein (1905) 

introduced his mathematical model of Brownian motion.  

 

Bachelier’s Brownian motion arises as a model of the fluctuations in stock prices. He argues that 

the small fluctuations in price seen over a short time interval should be independent of the current 

value of the price. Implicitly he also assumes them to be independent of past behaviour of the 

process and combined with the Central Limit Theorem he deduces that increments of the process 

are independent and normally distributed.  

 

Brownian motion is often used to explain the movement of time series variables, and in corporate 

finance the movement of asset prices. Brownian motion dates back to the nineteenth century when 

it was discovered by biologist Robert Brown (1827) examining pollen particles floating in water 

under the microscope (Ermogenous, 2005). Brown observed that the pollen particles exhibited a 

jittery motion, and concluded that the particles were ‘alive’. This hypothesis was later confirmed 

by Albert Einstein in 1905 who observed that under the right conditions, the molecules of water 

moved at random. The first mathematical rigorous construction is due to Wiener in 1923 that is 

why Brownian motion is sometimes called as Wiener process (Ermogenous, 2006). 

 

A common assumption for stock markets is that they follow Brownian motion, where asset prices 

are constantly changing often by random amounts (Ermogenous, 2005). The argument is built 

upon two key hypotheses: first, that the motion of the particles is caused by many frequent impacts 

of the incessantly moving molecules; second, that the effect of the complicated solvent motion can 

be described probabilistically in terms of very frequent statistically independent collision.      

 

This concept has led to the development of a number of models based on radically different 

theories. Two common approaches to predicting stock prices are those based on the theory of 

technical analysis and those based on the theory of fundamental analysis (Fama, 1995). Technical 

theorists assume that history repeats itself, that is, past patterns of price behaviour tend to recur in 
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the future. The fundamental analysis approach assumes that at any point in time an individual 

security has an intrinsic value that depends on the earning potential of the security, meaning some 

stocks are overpriced or under-priced (Fama, 1995). Many believe in an entirely different 

approach; the theory that stock market prices exhibit random walk. The random walk theory is the 

idea that stocks take a random and unpredictable path, making it near impossible to outperform 

the market without assuming additional risk. This theory casts serious doubts on the other methods 

of describing and predicting stock price behaviour. The GBM model incorporates this idea of 

random walks in stock prices (Reddy & Clinton, 2016).   

 

Geometric Brownian motion has two components; a certain component and an uncertain 

component. The certain component represents the return that the stock will earn over a short period 

of time, also referred to as the drift of the stock. The uncertain component is a stochastic process 

including the stocks volatility and an element of random volatility (Sengupta, 2004). Brewer, Feng 

and Kwan (2012) describe the uncertain component to the GBM model as the product of the stock’s 

volatility and a stochastic process called Weiner process, which incorporates random volatility and 

a time interval. 

 

2.2 Theoretical Foundation: The Overview 

A theory, according to Stoner, Freeman and Gilbert Jr. (2009), is a coherent group of assumptions 

put forth to explain the relationship between two or more observable facts and to provide a sound 

basis for predicting future events. More also, Kerlinger (1993) defined a theory as a set of 

interrelated constructs (concepts), definitions and propositions that present a systematic view of 

phenomena, by specifying relations among variables, with the purpose of explaining and 

predicting phenomena. Therefore, an understanding of the theories of geometric Brownian motion 

is strategic in helping us know where we are coming from and at the same time challenge us to 

keep learning about our field – quantitative finance. 

 

Bachelier (1900) seems to be the first to have provided an analytical valuation for stock options. 

His work is rather remarkable because by addressing the problem of option pricing, Bachelier 

(1900) derived most of the theory of diffusion processes. The mathematical theory of Brownian 

motion has been formulated by Bachelier (1900) five years before Einstein’s classic paper 

(Einstein 1905). Bachelier (1900) has formulated avant la lettre the Chapman-Kolmogorov 

equation (von Smoluchowski 1906; Chapman 1916; Chapman 1917; Kolmogorov 1931), called 

today the Chapman-Kolmogorov-Smoluchowski-Bachelier equation (Brown et al. 1995), and the 

Fokker-Plank or Kolmogorov equation (von Smoluchowski 1906; Fokker 1914; Fokker 1917; 

Plank 1917; Kolmogorov 1931). Moreover, the first-passage distribution function for the drift-free 

case was provided by Bachelier (1900) before Schrodinger (1915), and the effect of an absorbing 

barrier of Brownian motion was addressed by Bachelier (1900; 1901) prior to von Smoluchowski 

(1915; 1916). For a detailed summary of these early results see von Smoluchowski (1915; 1916).  

 

Jevons (1878) pointed out that the chaotic movement of microscopic particles suspended in 

liquids had been noted long before Brown (1827) published his careful observations; however, it 

should be noted that Brown (1827) was the first to emphasize its ubiquity and to exclude its 
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explanation as a biological phenomenon. A precise definition of the Brownian motion involves a 

measure of the path space that was first provided by Borel (1909) and constituted the basis of the 

formal theory of Wiener (1921a; 1921b; 1923).  

 

Bachelier assumed stock price dynamics with a Brownian motion without drift (resulting in a 

normal distribution for the stock prices), and no time-value of money. The formula provided 

may be used to evaluate a European style call option. Later on, Kruizenga (1956) obtained the 

same results as Bachelier (1900). As pointed out by Merton (1973) and Smith (1976), this approach 

allows negative realizations for both stock and option prices. Moreover, the option price may 

exceed the price of its underlying asset. 

 

Samuelson (1965) provided a rigorous review of the option valuation theory and pointed out that 

an option may have a different level of risk when compared with a stock, and therefore the discount 

rate used by Boness (1964) is incorrect. Samuelson and Merton (1969) provided a general 

equilibrium formula that depends on the utility function assumed for a typical investor. 

The Black and Scholes (1973) model is often regarded as either the end or the beginning of the 

option valuation history. Using two different approaches for the valuation of European style 

options, they present a general equilibrium solution that is a function of “observable” variables 

only, making therefore the model subject to direct empirical tests.  

 

2.3 Empirical Review 

With the fundamental discovery of Bachelier in 1900 that prices of risky assets (stock indices, 

exchange rates, share prices, etc.) can be well described by Brownian motion, a new area of 

applications of stochastic processes was born. 

Islam and Nguyen (2020) present a comparative study for stock price prediction using three 

different methods, namely: Auto-regressive Integrated Moving Average (ARIMA), Artificial 

Neural Network and Stochastic process – GBM. Each of the methods is used to build predictive 

models using historical stock data collected from Yahoo Finance. Finally, output from each of the 

models is compared to the actual stock price. Empirical results show that the conventional 

statistical model and the stochastic model provide better approximation for next-day stock price 

prediction compared to the neural network model. 

Rahul and Bidydhara (2020) stressed that Geometric Brownian Motion model is a mathematical 

model used for forecasting the future stock price and highly accurate as compared to other model 

and also gives high returns. They further stated that it helps the investors to take further decisions 

on their investment. Before forecasting the stock price using Geometric Brownian Motion model, 

Kolmogorov-Smirnov test and Q – Q plot technique were conducted on the sample data to 

conclude that the data are normally distributed and feasible to forecast. The algorithm starts from 

calculating the stock returns, drift and volatility to predict the return distribution at specific time‘t’. 

Simulations were performed using log volatility equation with the closest behavior to the S&P 

BSE closed stock price. The closest forecast simulation with actual stock closed price is selected 

with the more precise value of drift and volatility to proceed in Geometric Brownian Motion 

model. In order to determine the forecast accuracy as well as performance of the model  
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Mean Absolute Percentage Error (MAPE) is calculated. Since MAPE < 10% i.e. 5.41 %, it implies 

that Geometric Brownian Motion model is highly accurate and an appropriate model for 

forecasting stock price.    

Parungrojrat and Kidsom (2019) explored, compared and evaluated the predictive power of 

the Geometric Brownian Motion (GBM) and the Monte Carlo Simulation technique in 

forecasting the randomly selected 10 listed stocks in the SET50 of the Stock Exchange of 

Thailand (SET). The results showed that for the highest precision +/-0.5% of predicted 45 days 

returns, the percentage of accuracy is at the highest of around 5% (or 500 times in 10,000 

trials) for both GBM and Monte Carlo Simulation. It can be concluded that model accuracy in 

predicting end period returns is limited. Especially, predictive powers of the models are 

declining towards the longer the evaluated timeframe. Comparing GBM and Monte Carlo 

Simulation in term of percentage of accuracy in predicting the end period returns, the two 

techniques are indifferent. For the predictive power of movements in prices, the GBM is a 

preferred technique. Besides, Monte Carlo Simulations yields a better accuracy especially in a 

longer period of evaluated timeframe. In conclusion, both techniques can predict stock prices 

within a highly accurate range. Thus, the techniques can be applied for stock price forecasting 

with limits mentioned.   

Suganthi and Jayalalitha (2019) stated that financial instability estimates the changes of the cost 

of a monetary instrument. It is a proportion of properties of the Stock prices stability. Fractal 

investigations are used to assess the money related instability. Forecasting of stock prices acts as 

an important challenge based on the Random Walk theory. This paper deals with the comparison 

of two years of stock prices, 2013 -2014 and 2017 (June to Nov). Explain the instability by the 

method of Box-Counting technique to find the Fractal dimensions of the geometric Brownian 

motion based on the Random Walk defective value. This creates the possibility that Fractalijm 

measurement is related with the monetary unpredictability. It is an essential instrument for both 

money related investigators and Financial specialists.  

 

Farida, Affianti, and Putri (2018) use geometric Brownian motion to predict the future price of 

stock. The phase that is done before stock price prediction is determine stock expected price 

formulation and determine the confidence level of 95%. On stock price prediction using geometric 

Brownian motion model, the algorithm starts from calculating the value of return, followed by 

estimating value of volatility and drift, obtain the stock price forecast, calculating the forecast 

MAPE, calculating the stock expected price and calculating the confidence level of  95%. Based 

on the research, the output analysis shows that geometric Brownian motion model is the prediction 

technique with high rate of accuracy. It is proven with forecast MAPE value ≤ 20%.  

 

Brodd and Djerf (2018) investigate how Monte Carlo simulations of random walks can be used to 

model the probability of future stock returns and how the simulations can be improved in order to 

provide better accuracy. The implemented method uses a mathematical model called 

Geometric Brownian Motion (GBM) in order to simulate stock prices. Ten Swedish large-cap 

stocks were used as a data set for the simulations, which in turn were conducted in time periods of 

1 month, 3 months, 6 months, 9 months and 12 months. The two main parameters which determine 

the outcome of the simulations are the mean return of a stock and the standard deviation of 
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historical returns. By varying the assumptions regarding price distribution with respect to the size 

of the current time period and using other weights, the method could possibly prove to be more 

accurate than what this study suggests. Monte Carlo simulations seem to have the potential to 

become a powerful tool that can expand our abilities to predict and 

model stock prices. 

Nur Aimi Badriah, Siti Nazifah, and Maheran (2018) forecast share prices for one month using 

geometric Brownian motion. The purpose of the study is to identify the best duration of historical 

data and forecast days in order to accurately forecast share prices of companies in Bursa Malaysia. 

This study focused on 40 listed companies in Bursa Malaysia from the top gainers list. It was found 

that 65 historical days could forecast the share prices for 21 days accurately.   

Liden (2018) used a Geometric Brownian Motion (GBM) to predict the closing prices of the Apple 

stock price and also the S&P500 index. Additionally, closing prices have also been predicted by 

using mixed ARMA (p,q)+GARCH(r, s) time series models. Using 10 years of historical closing 

prices between 2008 and 2018, the predicted prices have also been compared to observed stock 

prices, in order to evaluate the validity of the prediction models. Predictions have been made using 

Monte Carlo methods in order to simulate price paths of a GBM with estimated drift and volatility, 

as well as by using fitted values based on an ARMA(p,q)+GARCH(r, s) time series model. The 

results of the predictions show an accuracy rate of slightly above 50% of predicting an up- or a 

down move in the price, by both using a GBM with estimated drift and volatility and also a mixed 

ARMA(p,q)+GARCH(r, s) model, which is also consistent with the results of K. Reddy and V. 

Clinton (2016). 

 

3. Methodology 

3.1 Research Design  

Empirical research design is applied in this research since it is the most relevant form for time 

series data analysis, and the nature of the data analysis is determined by the actual behaviour of 

the financial data rather than a pre-conceived notion.  

 

3.2 Population and Sample Design  

The population of this study is made-up of the eight (8) sectors of The Nigerian stock Exchange.  

The selection of the sample size is judgmental. A sample of one stock is chosen from each of the 

sectors. To form a round figure of ten (10); a stock was taken from the financial sector, (as that 

sector has the highest number of listed (quoted) firms), while another stock was taken from the 

construction sector as the sector has the most frequently (continuously) traded stocks in the Stock 

Exchange. 

The ten (10) stocks include: Okomu palm oil – agricultural sector; J. Berger – construction; UPDC 

real estate investment trust – real estate; Dangote sugar – consumer goods; Guarantee trust bank – 

finance; Axamansard insurance (mansard) – finance; Neimeth – health care; Chams – ICT; 

Dangote cement – industrial; Seplat – oil & gas. The sample is taken from different sectors of The 

Nigerian Stock Exchange. There are eight (8) sectors in The Nigerian Stock Exchange. They are: 
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1. Financials. The financial sector consists of banks, investment funds, insurance companies and 

real estate firms, among others. 2. Utilities. The utilities sector consists of electric, gas and water 

companies as well as integrated providers. 3. Consumer Goods. 4. Consumer Services. 5. Energy 

(Oil & Gas). 6. Healthcare 7. Industrials. 8. Technology.  

3.3 Data Collection  

Data is collected from ten (10) stocks quoted on The Nigerian Stock Exchange; daily stock prices 

data were obtained from the exchange database over the period four (4) years. The start date for 

the simulation was 1st January, 2015 and end 31st December, 2018, which was chosen to avoid any 

effects of seasonality in stock prices. The stock prices (open, high, low and close) of the companies 

are used to gather the data. 

 

3.4 Model specification 

3.4.1 Application of geometric Brownian motion (GBM) 

The GBM method is used to forecast stock prices of the selected companies using the Monte  

Carlo simulation in the EXCEL software to determine the accuracy and effectiveness. For the 

GBM method, the procedures are as follows: 

1. The data are tested for normality using the computer software. 

2. The daily drift, daily volatility and the average drift are determined using the formula 

shown below: 

 

𝐷𝑎𝑖𝑙𝑦 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑅𝑒𝑡𝑢𝑟𝑛 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑅𝑒𝑡𝑢𝑟𝑛

𝑁𝑜.𝑜𝑓 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟
                                                             (3.1) 

 

𝐷𝑎𝑖𝑙𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦

√𝑁𝑜.𝑜𝑓 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟
                                                                        (3.2) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑟𝑖𝑓𝑡 = 𝐷𝑎𝑖𝑙𝑦 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑅𝑒𝑡𝑢𝑟𝑛 − 0.5 x 𝐷𝑎𝑖𝑙𝑦 𝐷𝑎𝑖𝑙𝑦 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦2                        (3.3) 

 

3.  The value of the random number generated from probability distribution, ɛ, is determined using 

the EXCEL function of NORM.S.INV(RAND). This function gives a random number from the 

normal distribution table. 

4. Once all variables are known, the future stock value is determined using the Geometric 

Brownian motion formula as shown below: 

 

𝑆(𝑡) = 𝑆(0)𝑒
(𝜇−

𝜎2

2
)𝑡+𝜎𝜀(𝑡)

                                                                                                         (3.4) 

 

Where: 

𝑆(𝑡) = future stock value 

𝑆(0) = initial stock value 

µ = daily drift 

σ = daily volatility 

ɛ = value from probability distribution 
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3.5 Model Assumptions 

Generally, the returns can be assumed as a random variable, which has closed enough to a normal 

distribution with a non-zero mean and standard deviation. So, the distribution of asset returns can 

be defined as follows: 

 

𝑅𝑖 =
𝑆𝑡−𝑆𝑡−1

𝑆𝑡−1
= 𝑀𝑒𝑎𝑛 + 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑥 𝜑                                                                  (3.5)  

   

Statistically, it is difficult to measure mean scale of the distribution with the smaller parameter 𝛿𝑡 

which represents the time gap between assets. The drift rate or growth rate 𝜇 of the distribution 

can be assumed as a constant and defined as equation (3.6). 

   

Mean = 𝜇𝛿𝑡                                                                                                                     (3.6) 

   

The volatility (standard deviation) of the distribution is significant and elusive quantity in the 

theory of derivatives. The standard deviation of the asset returns over a time step 𝛿𝑡 is given as 

equation (3.7), (Chang, Lima and Tabak, 2004).       

 

Standard deviation = 𝜎𝛿𝑡1 2⁄                                                                                    (3.7) 

 

Putting these scaling explicitly from equations (3.6) and (3.7) into asset return model represents in 

equation (3.5), then, we have:  

 

𝑅𝑖 =
𝑆𝑡−𝑆𝑡−1

𝑆𝑡−1
= 𝜇𝛿𝑡 + 𝜎𝛿𝑡1 2⁄                                                                                                      (3.8) 

 

The term 𝑑𝑤𝑖 be a random variable, from normally distribution with mean zero and variance 𝛿𝑡. 

So, equation (3.8) can be simplified as follows: 

 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝛿𝑡 + 𝜎𝑆𝑡𝑑𝑤𝑡                                                                                                              (3.9) 

 

Integrating equation (3.7) with respect to t; 

 

∫
𝑑𝑆𝑡

𝑆𝑡
= 𝜇𝑡 + 𝜎𝑤𝑖

𝑡

0
                                                                                                                     (3.10) 

 

Where; let we assume that, 𝑤0 = 0. It is clear that, term 𝑆𝑖 under the Ito process. So, we used Ito’s 

calculation for our further study:    

 

𝑑(𝐼𝑛𝑆𝑡) =
𝑑𝑆𝑡

𝑆𝑡
−

1

2
𝜇2𝑑𝑡                                                                                                            (3.11) 

 

Now, substitute equation (3.9) into the equation (3.7) we get;  
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𝑑(𝐼𝑛𝑆𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝑤𝑖 −
1

2
𝜎2𝑑𝑡                                                                                            (3.12)  

 

Integrating both sides with respect to 𝑡, we get: 

 

𝑆𝑡 = 𝑆0 𝑒𝑠𝑝[(𝜇 −
1

2
𝜎2) 𝑡 + 𝜎𝑤𝑖]                                                                                             (3.13)   

 

Where 𝑤𝑡 = 𝑋𝑡 − 𝑋0. Equation (3.12) indicated continuous stochastic process of Geometric 

motion that we used for simulation for the forecast of stock market indices. 

 

3.6 Model Accuracy Testing 

Time series forecasting considered as a technique which can be used for predicting future aspects 

of many operations. Numerous methods have been carried out by many research works to 

accomplish their goals. In this study, Mean Absolute Percentage Error (MAPE) is used to compare 

the prediction accuracy of the model. The accuracy model as defined by Wang, Wang and Zhang 

(2012) is as follows: 

 

휀𝑀𝐴𝑃𝐸 =
1

𝑀
∑

|𝑋𝐴−𝑋𝑃|

𝑋𝐴

𝑀
𝑗=1                                                                                                            (3.14)   

 

Where 𝑋𝐴 and 𝑋𝑃 represent the actual value and predicted value of the indices respectively. The 

table below represents the scale of judgment of forecast accuracy regarding error (MAPE) and 

clearly indicated that minimum values of MAPE make more accuracy for forecasting future 

prediction (Omar and Jaffar, 2011). 

 

Table 3.1: A scale of judgment of forecasting 

   MAPE           Forecast Accuracy 

< 10% 

11% - 20%  

21% - 50%  

> 51% 

Highly accurate  

Good forecast  

Reasonable forecast  

Inaccurate forecast  

  Source: Abidin and Jaffar (2014) 

 

 

According to Lawrence, Klimberg and Lawrence (2009), there are three measurements of 

forecasting model which involve time period, 𝑡. The measurements are number of period forecast, 

(𝑛), actual value in time period at time, (𝑡, 𝑌𝑡) and forecast value at time period 𝑡, (𝐹𝑡). They are 

widely used to evaluate the forecasting method that considers the effect of the magnitude of the 

actual values (Abidan and Jaffar, 2012).  
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3.7 Analytical Layout of Geometric Brownian Motion 

3.7.1 Statistical Layout of Geometric Brownian Motion 

Let Ω be the set of all possible outcomes of any random experiment and the continuous time 

random process  Xt, defined on the filtered probability space (Ω, 𝐹, {𝐹𝑡}𝑡𝜖𝑇 , 𝑃). 
where, F is the 𝜎 − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎 of event, 

 {𝐹𝑡}𝑡𝜖𝑇 denotes the information generated by the process Xt over the time  interval [0,T]. 

 P is the probability measure. 

Definition: A random variable ‘X’ has the lognormal distribution with parameters 𝜇 and 𝜎 if log 

(X) is normally distributed. i.e., 

log (𝑋)~𝑁(𝜇, 𝜎2) 

Definition: A real valued random process 𝑊𝑡 = 𝑊(𝑡, 𝑤) on the time interval [0,∞] is Brownian 

Motion or Wiener Process if it satisfies following conditions (Karlin & Taylor, 2012 and Ross, 

1996). 

1. Continuity: 𝑊0 = 0 

2. Normality: for 0 ≤ 𝑠 < 𝑡 ≤ 𝑇, 𝑊𝑡 − 𝑊𝑠~𝑁(0, 𝑡 − 𝑠) 

3. Markov Property: For 0 ≤ 𝑠 ′  < 𝑡′  < 𝑠 < 𝑡 ≤ 𝑇, 𝑊𝑡 − 𝑊𝑠  

 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑊𝑡′ − 𝑊𝑠′ 

A stochastic process St is used to follow a Geometric Brownian Motion if it satisfies the following 

stochastic differential equation. 

𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

where, 𝑊𝑡 is a Wiener process (Brownian Motion) and 𝜇 & 𝜎 are constants. 

Normally, it is called the percentage drift and 𝜎 is called the percentage volatility. So, consider a 

Brownian Motion trajectory that satisfies this differential equation. The right hand side term 𝜇𝑆𝑡𝑑𝑡 

controls the trends of this trajectory and the term 𝜎𝑆𝑡𝑑𝑊𝑡 controls the random noise effect in the 

trajectory. 

After applying the technique of separation of variable, the equation becomes: 

𝑑𝑆𝑡

𝑆𝑡
=  𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡 

Taking integration of both side 
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∫
𝑑𝑆𝑡

𝑆𝑡
= ∫( 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡)𝑑𝑡 

Since 
𝑑𝑆𝑡

𝑆𝑡
 relates to derivative of In(𝑆𝑡) the 𝐼𝑡�̅� calculus becomes: 

In(
𝑑𝑆𝑡

𝑆𝑡
) = [(𝜇 −

𝜎2

2
) 𝑡 + 𝜎𝑊𝑡] 

Taking the exponential in both sides and plugging the initial condition S0, the analytical solution 

of Geometric Brownian Motion is given by: 

𝑆𝑡 = 𝑆0 exp [(𝜇 −
𝜎2

2
) 𝑡 + 𝜎𝑊𝑡] 

The constants 𝜇 and 𝜎 are able to produce a solution of Geometric Brownian Motion throughout 

time interval. For given drift and volatility the solution of Geometric Brownian Motion in the 

form: 

          𝑆𝑡 = 𝑆0 exp[𝑥(𝑡)] 

where 𝑥(𝑡) = (𝜇 −
𝜎2

2
) 𝑡 + 𝜎𝑊𝑡   

Now the density of Geometric Brownian Motion is given by  

𝑓(𝑡, 𝑥) =
1

𝜎𝑥(2𝜋𝑡)
1

2⁄
exp [−(log 𝑥 − 𝑙𝑜𝑔𝑥0 − 𝜇𝑡)]/2𝜎2𝑡 

 

 

mle estimation: 

Suppose that a set of input: 𝑡1, 𝑡2, 𝑡3 … … … …. and a set of corresponding output:  

𝑆1, 𝑆2, 𝑆3 … … … …. from 𝑆𝑡 and the set of data is in the mle function 𝐿(𝜃). Since Geometric 

Brownian Motion is a Markov Chain Process 

𝐿(𝜃) = 𝑓𝜃(𝑥1, 𝑥2, 𝑥3 … … … ) = ∏ 𝑓𝜃(𝑥𝑖)

𝑛

𝑖=1

 

Now taking derivative of the right hand side, we get 

�̅� = ∑
𝑥𝑖

𝑛

𝑛

𝑖=1

 

http://www.carijournals.org/


International Journal of Finance   

ISSN 2520-0852 (Online) 

Vol. 6, Issue No. 2, pp 1 - 35, 2021                 www.carijournals.org  

 

14 
 

�̅� = ∑
(𝑥𝑖 − 𝑚)2

𝑛

𝑛

𝑖=1

 

where �̅� and �̅� are the mle of m and v respectively and  𝑥𝑖 = log 𝑆( 𝑡𝑖)-log S(𝑡𝑖 − 1) 

 

3.7.2 Mathematical Layout of Geometric Brownian Motion 

Suppose 𝑋 is a continuous random variable follow lognormal distribution, then 𝑣 = 𝐼𝑛𝑋 is a 

random variable which is normally distributed with mean 𝜇 and variance 𝜎2. Symbolically: 

𝑣 = 𝐼𝑛𝑋~𝑁(𝜇, 𝜎2) 

The probability density function from variable 𝑣 becomes: 

𝑓(𝑣) =
1

𝜎√2𝜋
exp [

−1

2
(

𝑣 − 𝜇

𝜎
)2] 𝑓𝑜𝑟 − ∞ < 𝑣, 𝜇 < ∞ 𝑎𝑛𝑑 𝜎 > 0 

𝑓𝑜𝑟 𝑣 = 𝐼𝑛𝑋, 𝑑𝑣 = 𝑑(𝐼𝑛𝑋) =
1

𝑥
𝑑𝑋 

and  

ℎ(𝑥) =
𝑓(𝑣)𝑑𝑣

𝑑𝑥
=

1

𝜎√2𝜋
exp [

−1

2
(

𝐼𝑛𝑥 − 𝜇

𝜎
)2 ]

1

𝑥
𝑑𝑥 

thus, probability density function becomes: 

ℎ(𝑥) =
1

𝜎𝑥√2𝜋
exp [

−1

2
(

𝐼𝑛𝑥 − 𝜇

𝜎
)2 ] ; 𝑥 > 0 

where 𝜇 and σ2 represents mean and variance of the lognormal variable x. 

Now, 

𝐸(𝑥) = ∫ 𝑥ℎ(𝑥)𝑑𝑥 = ∫
1

𝜎√2𝜋
exp[

−1

2
(

𝐼𝑛𝑥−𝜇

𝜎
)2] 𝑑𝑥

∞

−∞

∞

−∞
                                                          (M4.1) 

If 𝑦 = 𝐼𝑛𝑥 − 𝜇, 𝑡ℎ𝑒𝑛 𝑑𝑦 =  
1

𝑥
𝑑𝑥 𝑎𝑛𝑑 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(4.1)𝑏𝑒𝑐𝑜𝑚𝑒𝑠 

𝐸(𝑒𝑦+𝜇) = ∫
1

𝜎𝑥√2𝜋
exp(𝑦 + 𝜇) exp [

−1

2
(

𝑦

𝜎
)2] 𝑑𝑦 

∞

−∞

 

= 𝑒𝜇𝑒
𝜎2

2  ∫
1

𝜎√2𝜋
exp [

−1

2
(

𝑦−𝜎2

𝜎
)2] 𝑑𝑦

∞

−∞
                                                                                  (M4.2) 
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𝐼𝑓 𝑧 =
𝑦−𝜎2

𝜎
, 𝑡ℎ𝑒𝑛 𝑑𝑧 =  

1

𝜎
𝑑𝑦, 

 and equation (M4.2) becomes: 

𝐸[𝑒𝑧𝜎+𝜎2+𝜋
] = exp (𝜇 +

𝜎2

2
) ∫

1

√2𝜋
exp [

−𝑍2

2
] 𝑑𝑧

∞

−∞
                                                                 (M4.3) 

The integral part of the above equation is a probability density function of standard normal 

distribution subject to the conditions integral 𝐼𝑛𝑥 = −∞ becomes 𝑦 = −∞ and 𝐼𝑛𝑥 = +∞ 

becomes 𝑦 = +∞ in equation (M4.2) and integral 𝑦 = −∞  becomes 𝑧 = −∞ and 𝑦 = +∞ 

becomes 𝑧 = +∞ in equation (M4.3). 

Now the expected stock price: 

𝑆𝑡 = 𝑆0 exp [(𝜇 −
1

2
𝜎2) 𝑡 + 𝜎𝐵𝑡]                                                                                          (M4.4) 

is called the Geometric Brownian Motion with drift.  

Where 

𝑆0 = Actual beginning stock price 

𝜇 = Mean of lognormal distribution 

𝜎2 = Variance of lognormal distribution  

𝐵𝑡 = Brownian Motion at time ‘t’ with 𝜇 = 0 and defined as, 

𝐵𝑡 = 𝜇𝑡 + 𝜎𝑊𝑡                                                                                                                      (M4. 5) 

where, 𝑊𝑡 = Wiener process at time ‘t’. 

Now 𝐸(𝐵𝑡) = 𝜇𝑡 + 𝐸(𝜎𝑊𝑡) = 𝜇𝑡 𝑎𝑠 𝐸(𝑊𝑡) = 0 𝑎𝑛𝑑 

𝑉𝑎𝑟(𝐵𝑡) = 𝐸(𝐵𝑡)2 − [𝐸(𝐵𝑡)2] = 𝜎2𝑡 

Hence Brownian Motion with drift is normally distributed with mean 𝜇𝑡 and variance 𝜎2𝑡. 
Symbolically: 

𝐵𝑡~𝑁(𝜇𝑡, 𝜎2𝑡) 

Thus  

𝐼𝑛 𝑆𝑡~𝑁(𝐼𝑛𝑆𝑡−1 + (𝜇 −
1

2
𝜎2) 𝑡, 𝜎2𝑡) 

Hence expected stock price at time ‘t’ for future stock is  
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𝐸(𝑆𝑡) = 𝑆0 exp [(𝜇 −
1

2
𝜎2) 𝑡] 𝑎𝑛𝑑  

𝑉𝑎𝑟(𝑆𝑡) = 𝑆0
2 exp(2𝜇 + 𝜎2𝑡) [exp(𝜎2𝑡) − 1] 

With 95% confidence interval, 𝑆𝑡 becomes: 

exp [𝐼𝑛𝑆0 + (𝜇 −
1

2
𝜎2) 𝑡 − 1.96𝜎√𝑡]  ≤ 𝑆𝑡 

≤ exp [𝐼𝑛𝑆0 + (𝜇 −
1

2
𝜎2) 𝑡 + 1.96𝜎√𝑡] 

 

4. Analysis, Results and Findings 

4.1Normality Tests 

To conduct tests, it is important to verify first, if the stock prices of the selected companies 

individually follow an approximately normal distribution process. The results of the normality 

tests are based on visual and statistical methods using the full sample size of the study. 

Normality test of stock price data during January 1st 2015 to December 31st 2018 period is 

conducted. Normality test is conducted to find whether the stock data is normally distributed or 

not. The test is made up of visual and analytical methods. 

The histogram is used to determine whether the data are approximately normally distributed; the 

bell-shaped histogram gives an indication that the data are normally distributed, while the bird-

like shape histograms give support for the non-rejection of the normality assumption. 

The Q-Q plot is the graphical alternative to the histogram. The Q-Q plots show that in all cases, 

the sample data almost rest on the 45-degree line, meaning that there is a good correspondence 

between the data.   

The Kolmogorov-Smirnov (analytical) test is one of the strongest statistical tests used for this 

purpose. Kolmogorov-Smirnov tests whether there is significant difference between expected and 

observed frequency to determine whether there is distribution goodness-of-fit. Using the E-views 

statistical tools, we performed the test at 5% significance level. 
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Table 1  Empirical Distribution Test 

Company                                K-S value                    Adjusted value               Probability 

Okomuoil                                0.046794                    1.225140                  0.0497 

J-Berger                                  0.239261                     6.063678                    0.0000 

Updcreit                                  0.122549                      0.443120                   0.6752 

Dang-Sugar                             0.003890                    0.121003                   0.9711 

Guaranty Trust                        0.038717                    1.243115                    0.0455 

Mansard                                  0.042177                    1.148685                    0.0714 

Neimeth                                   0.088210                     2.322990                    0.0000 

Chams                                     0.661932                    12.50225                    0.0000 

Dang-Cement                              0.141729                        4.413393                    0.0000 

Seplat                                      0.062585                    1.673038                    0.0037 

Source:  Author 

 

The normality assumption does not hold for five of the companies (Seplat, Dang-Cement, 

Neimeth, Chams and J-Berger). However, for the unadjusted K-S statistic (with smaller values), 

the normality preposition cannot be rejected in any of the cases.  

Based on Kolmogorov – Smirnov normality test it can be concluded that the stock price is normally 

distributed and feasible to forecast stock price using the data. 

 The unit period of time, which we used in this simulation is of one-day length (1 day =1/252 

≈0.004 year). On the average there are 252 trading days in the year. The value of the stock volatility 

and its drift can be respectively estimated according to the general GBM model. The results are 

shown in table 2. 
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4.2 Descriptive Statistics 

Table 2  Estimated value of Drift and Volatility 

 
 

COMPANY YEAR SO CAPITALIZATION ANNUALIZED 

RETURN 

ANNUALIZED 

VOLATILITY 

      

OKOMUOIL 2015 30.6 11679481.8 0.201747818 0.002085833 

OKOMUOIL 2016 60.63 12768514.7 0.858167364 0.001451518 

OKOMUOIL 2017 92 30959838.65 1.768125314 0.00225967 

OKOMUOIL 2018 49 27954536.52 -0.90970765 0.003011194 

JBERGER 2015 43.1 47776120.23 -0.487998721 0.153089828 

JBERGER 2016 38 4948270.325 -0.000253937 0.001296546 

JBERGER 2017 30 9983149.129 -0.57234506 0.002245321 

JBERGER 2018 20.6 9737483.554 -0.731399226 0.004290049 

UPDCREIT 2015 10 990908.3816 0 0 

UPDCREIT 2016 10 708549.5238 0 0 

UPDCREIT 2017 10 867866.9231 0 0 

UPDCREIT 2018 5.4 499356.3333 -0.99999375 0.003363608 

DANGSUGAR 2015 5.52 17681535.24 -0.084191379 0.001701482 

DANGSUGAR 2016 9.3 9629526.42 0.666211326 0.001874139 

DANGSUGAR 2017 17.5 75703292.83 0.82637403 0.001830949 

DANGSUGAR 2018 9.6 16702210.39 -0.519080058 0.002068239 

GUARANTY 2015 15.99 545595301.9 -0.359589531 0.002028295 

GUARANTY 2016 33.55 412998572.8 1.18524257 0.001585651 

GUARANTY 2017 40.1 895998641.3 0.000176975 0.001158893 

GUARANTY 2018 26 710435945.1 -0.35556623 0.00146611 
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MANSARD 2015 2.3 13084395.31 -0.266938174 0.001657355 

MANSARD 2016 2.29 954959.179 -0.004347864 0.001932512 

MANSARD 2017 2.55 5331427.502 0.170818332 0.002197771 

MANSARD 2018 1.8 8599281.444 -0.207628128 0.003793643 

NEIMETH 2015 0.86 343222.8042 0.146356816 0.001868705 

NEIMETH 2016 0.71 232844.9087 -0.195603037 0.00236049 

NEIMETH 2017 0.52 438604.4852 0 0.002954215 

NEIMETH 2018 0.51 362793.479 -0.047760146 0.004473222 

CHAMS 2015 0.5 1481231.86 0 0.000162404 

CHAMS 2016 0.5 560262.2438 0 0 

CHAMS 2017 0.37 305429.9333 -0.927934342 0.001203156 

CHAMS 2018 0.23 2615628.584 -0.257141801 0.006 

DANGCEM 2015 129.83 148378478.3 -0.311793641 0.001393708 

DANGCEM 2016 205 126932656.5 0.586666955 0.001371768 

DANGCEM 2017 227 275003312.8 0.123234556 0.001388337 

DANGCEM 2018 164 248703672.6 -0.318474196 0.001348321 

SEPLAT 2015 170.88 41901472.8 -0.508837709 0.001606948 

SEPLAT 2016 425 146836758.9 1.349137638 0.002183293 

SEPLAT 2017 635 76893252.57 0.835266275 0.001511631 

SEPLAT 2018 490 108699817.8 -0.599309616 9.84921E-05 

      

Source: Author 

  

Table 2 exhibits for each period the annualized return in column 5. Average capitalization and 

initial prices are in columns 4 and 3 respectively. Annualized volatility of the stock obtained by 

applying the GBM formula is displayed in column 6 of the table. The table provides very important 

information about the behavior of the stocks. The drift or assumed annual expected return of the 
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stocks differs from one period to another and across companies. For instance, Okomuoil has 

positive expected annualized return for years 2015 to 2017, but in 2018, the company’s expected 

return is negative.    

The most capitalized companies are Dang-Sugar, Dang-Cement, Guaranty and Seplat and the least 

capitalized ones are Mansard, Neimeth and Chams. Initial market prices are low for Chams, 

Neimeth, Mansard and Updcreit. However, the lowest volatile company is Updcreit. The 

behaviour of the stock price is therefore significant in the prediction of future stock prices. 

4.3 Results and Findings 
The first thing we did was to estimate the expected level of return, and the volatility of the stock. 

The expected level of return can be estimated by calculating the mean of the historical returns. The 

volatility can be estimated by calculating the standard deviation of the historical returns. From the 

expected level of return and from the volatility of the stock we set up a probability distribution 

which attempts to model the behaviour of the stock.  

 

The simulation itself is the act of generating random numbers out of the probability distribution 

function. By sampling, say ten values from the distribution, we get a sense of how the  stock could 

potentially behave within the next ten days.   

 

As shown in Table 3, the predicted prices are yielded by the theoretical model (GBM); and in 

comparison, with the actual stock prices, we observe cases of significant differences. For instance, 

there are significant differences in Okomuoil’s actual and stimulated prices for the period 2016, 

2017 and 2018. In 2015, the difference is not too obvious (we record about N6.84). J-Berger 

http://www.carijournals.org/


International Journal of Finance   

ISSN 2520-0852 (Online) 

Vol. 6, Issue No. 2, pp 1 - 35, 2021                 www.carijournals.org  

 

21 
 

reveals a difference between the actual and stimulated prices for year 2015, 2017 and 2018, but in 

2016, the stimulated price and actual price are approximately at par. There is no difference between 

the approximate predicted prices and actual prices for Updcreit in period of 2015 to 2017; however, 

much disparity is noted in 2018 where the actual price is N5.4 and predicted is N1.97.  

 

  
Figure4-2-1: Line Plot of Actual and Predicted 

Price of OKOMUOIL 
Figure 4-2-2: Line Plot of Actual and Predicted Price of 

J-BERGER 

 
 

Line Plot of Actual and Predicted Price of 

UPDCREIT 
Figure 4-2-4: Line Plot of Actual and 

Predicted Price of DANG-SUGAR 
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Figure 4-2-5:Li.ne Plot of Actual and Predicted 

Price of GUARANTY TRUST 
Figure 4-2-6: Line Plot of Actual and 

Predicted Price of MANSARD  

  
Figure 4-2-7:Line Plot of Actual and 

Predicted Price of NEIMETH 

Figure 4-2-8: Line Plot of Actual and Predicted Price of 

CHAMS  

  
Figure 4-2-9: Line Plot of Actual and Predicted 

Price of DANGCEMENT  

Figure 4.2-10: Line Plot of Actual and Predicted Price 

of SEPLAT  
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Table 4    Preposition 1 Summary Results 

 

                    Correlation                   Mean Absolute Percentage Error 

                                12-Month   24-Month     36-Month        12-Month      24-Month   36-Month 

Mean -0.0149 0.000921 0.170405 0.502666 0.462861 0.590441 

mean-absolute 0.014902 0.000921 0.170405 0.502666 0.462861 0.590441 

Median -0.01481 5.89E-05 0.366873 0.603449 0.393031 0.514993 

median-absolute 0.014812 5.89E-05 0.366873 0.603449 0.393031 0.514993 

Range 0.238638 1.788266 1.568857 0.913048 0.80997 0.93167 

Min -0.14158 -0.91565 -0.73448 0.008695 0.047987 0.14347 

Max 0.097057 0.872616 0.834376 0.921742 0.857958 1.075141 

standard-deviation 0.075004 0.734138 0.536576 0.328501 0.267266 0.336565 

Note that the MAPE value between 1% and 10% indicates accurate forecast, 11% and 20% shows 

good forecast, 21% and 50% deemed reasonable and above 50% is inaccurate forecast. (see, 

Abidin & Jaffar, 2014) 

Source: Author  

 

Accuracy and Predictive Power of the Model 

(i) Accuracy of the Model 
The model accuracy depends on the percentage of the error. The smaller the MAPE value, the 

more accurate the forecasting model is.  A scale of judgment of forecasting accuracy with MAPE 

is that MAPE value between 0% and 10% indicates accurate forecast, 11% and 20% shows good 

forecast, 21% and 50% deemed reasonable and above 50% is inaccurate forecast. (see, Abidin & 

Jaffar, 2014). 

 

To give more confident to the researchers, we measured the accuracy of the forecast model by 

looking at the MAPE value. Table 4.3 shows the forecast price and actual price from 2015 to 2018.  

The value of the MAPE is 50% and below for the one to two year holding periods, and above 50% 

for the three-year holding period. Meaning that the GBM model is a reasonable predictive model 

for one or two years, but for three years, it is an inaccurate predictor. It was found that MAPE was 

lowest over simulation periods of one-holding period and two-holding period, but the error tended 

to increase when longer horizons were considered. Due to random behavior of stock price, 

Geometric Brownian motion model is highly suitable for short term forecasting.  

 

It is also observed in table 4.4 that the absolute median and standard deviation are smaller for the 

short holding period than for the long holding period. This suggests that the correlation between 

the predicted and the actual prices is less volatile in the short holding period than in the long 

holding period. Alternatively, the relationship between the stimulated value and real value of these 

stocks is more stable in the one-year holding period than in the two- to three-year holding periods.  
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The mean correlation over the short-term is slightly negative and grows positive as the 

simulation period is increased. This means that for one-year holding and two-year holding, 

predictions simulated prices move in the opposite direction with the real prices. For periods of 

three years or longer they correlate and begin to follow the prices more accurately. This could be 

a result of the certain component of the GBM model compensating for negative random 

fluctuations, as stock prices tend to increase over time. Looking at the median correlation leads to 

similar results as this is also negative for short periods and becomes positive after one year. The 

absolute mean and standard deviation are lowest for one-year predictions suggesting that there is 

less variability over this prediction horizon. 

   

(ii)  Predictive power of the model 

The predictive power of the model is declining towards the longer the evaluated time frame proven 

by the higher value of the mean absolute percentage error.  

 

Portfolio’s formation 
We form quartile portfolios of 30%, 40% and 30%, based on high, moderate and low respectively 

and the formation period is 2015.  The portfolios are classified by volatility, expected return and 

market capitalization. The holding periods are 12 months (which is 2016), 24 months (2016-2017) 

and 36 months (2016-2018).  

 

Testing the hypothesis that there is no significant difference between actual and predicted prices 

for portfolios classified by volatility, a quartile portfolio of 30%, 40% and 30% (highly volatile, 

moderate and low portfolios) respectively was formed based on the value of the stock standard 

deviations, and the formation period is 2015. The holding periods are 12 months (which is 2016), 

24 months (2016-2017) and 36 months (2016-2018). The results of the comparison in each of these 

holding and three portfolios are shown in table 5 

 

Table 5  Summary Results for the Test of Preposition 2 based on Correlation 

 

              Portfolio classification                          12 months       24months       36 months 

High Volatile Portfolio 0.632449 0.996749    -0.33139 

Moderate Volatile Portfolio 0.999967 0.999988 0.999995 

Low Volatile Portfolio 0.999828 0.999935 0.999941 

Source-Author 

 

The correlation coefficient between the predicted and real prices for high volatile portfolio is 

positive for 12 and 24-month holding period, but negative for the 36-month holding period. This 

suggests that for a highly volatile portfolio, predicted and real prices move in the same direction; 

there is convergence and history can repeat itself. No randomity (differences) since the prices of 

these stocks can be predicted based on past information. However, for three year holding period, 

the real prices of stocks for volatile portfolio are significantly different from the predicted. 

Meaning that stock of volatile portfolio are stochastic when held for three years but deterministic 

when held for one or two years. Correlation coefficients with respect to moderate and low volatile 
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portfolios are very strong for all the three holding periods. This suggests inefficiency and 

repeatability of past prices in the future.  

We also form portfolios based on the expected returns of stocks, and conduct the test to show if 

there is difference between real and stimulated stock prices. The summary results are presented in 

table 4.6. 

 

Table 6  Summary Results for the Test of Preposition 3 based on Correlation 

 

                                                           12 months              24months             36 months 

High Expected Return Portfolio 0.996348 0.996092254 0.996651517 

Moderate Expected Return 

Portfolio 0.994899 0.998989672 0.99942051 

Low Expected Return Portfolio 0.969479 0.981217239 0.637766001 

Source-Author 
 

The table (4.6) shows that correlation coefficients for three portfolios and in each holding period 

are positive, and approximately 1. Thus, we have evidence that there is approximately perfect 

correlation between the predicted prices and the stimulated. Meaning that, real prices of portfolios 

chosen by expected returns are truly represented by predicted prices. The technical assumption is 

fair for stocks of portfolios using expected return. 

 

Furthermore, a hypothesis that there is no significant difference between actual and predicted 

prices for portfolios classified by Market Capital was tested. We present the result of the test on 

preposition four in table 7 below. 

 

Table 7  Summary Results for the Test of Preposition 4 based on Correlation 

 

                                                                       12 months            24months              36 months 

High Capitalized Portfolio          0.973531 0.989879 0.994015 

Moderate Capitalized Portfolio 0.998766 0.996531 0.996467 

Low Capitalized Portfolio 0.999928 0.999857 0.999847 

Source-Author 

 

As shown in table 7, the correlation coefficient is close to 1 for the holding period in each portfolio. 

This classification does not support the randomity of stock prices since historical/previous prices 

are perfectly positively correlated with forecast prices. In essence, on the basis of portfolio 

formation using market capitalization, predicted prices converge to real prices.  

 

4.4 Discussion of Findings 

Generally, the test attempts to investigate whether or not there is a significant difference between 

actual and simulated prices using the GBM model by looking at the stocks on an individual basis. 

The expected returns of GBM model are independent of the value of the process, which agrees 
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with what we would expect in reality; and shows the same kind of movement in its paths as we see 

in real stock prices.  

 

Comparing the predicted with the actual, cases of significant differences were observed. From 

Table 4, it is realized that when the average returns predicted by the model are compared to the 

actual average returns, there are significant differences between the predicted and actual in traded 

stocks.  

Compared with the previous works, the results confirm the work of Abidin and Jaffar (2012) which 

concluded that the GBM suits for short-term investment; and also echoes the work of Kawinpas et 

al (2015), concluding that the shorter the forecasting period the better the results.  

Most of the prior studies have suggested that there is a weak relationship between the two 

variables. We have reported a negative correlation during short periods of simulation, which 

becomes positive with longer forecast horizons. Noise or volatility in the market makes simulated 

stock price and actual stock price to have a negative correlation in the short term, whereas stock 

prices stabilize to its mean value in the longer run causing a positive correlation between simulated 

and actual prices.  

5.1 Conclusion 

Generally speaking, modeling of stock prices is about modeling new information about stocks. In 

this study modeling has been realized through the quantification of a stochastic part in the general 

expression of the model. The results of the simulation performed in this study do not always match 

those of the theoretical model even if the assumptions on which the model is based meet the 

financial market rules. 

 

The analysis of simulation results provides important thing: the correlation between the predicted 

prices and the actual prices is less volatile in the short holding period than in the long holding 

period. Alternatively, the relationship between the stimulated value and real value of these stocks 

is more stable in the one-year holding period than in the two to three year holding periods.  

5.2 Recommendation  

It is recommended that the Geometric Brownian Motion model should be used to forecast daily 

stock prices [over short period as it gives more accurate result]. 

The Technical Analyst whose primary motive is to make gain at the expense of other participants 

should identify high volatile portfolio in any holding period for effective prediction. Regulatory 

authorities in the market should focus on long-term stability by holding reserves that can cushion 

off the effects of illiquidity, particularly in the time of extreme turbulence. Investors with long-

range holding position as investment strategy should concentrate more on low capitalized stocks 

rather than stocks with large market capitalization.  

However, it is suggested that they should diversify to more efficient portfolio with combination of 

low and large capitalized stocks so the loss or the gain resulting from market inefficiency can be 

reduced optimally.  
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Contribution to knowledge 

As the random character of the GBM model stands out in the short term, this approach presents 

the limitation of not allowing the investigation of any behavior trend. In the long run, however, 

this is not observed, and a trend can be studied. This study illustrates both scenarios by presenting 

the most random character in the short term and a trend in the long term, for the same simulation. 

The study reveals that the GBM model can diverge if the time series is built for long-term period, 

driving the price to infinity; in that sense some simulations that follow the model may not be 

realistic. 

 

One would intuitively assume that stocks with higher expected returns would perform better than 

those with lower expected returns. However, as shown in Table 6, this may not always be the case. 

Forecasts for the portfolio show that over the simulation period, correlation coefficients for the 

three formed portfolios are positive and approximately one (1) despite having high-to-moderate 

expected return. Meaning that, real prices of portfolios chosen by expected returns are truly 

represented by predicted prices, therefore, the technical assumption is fair for stocks of portfolios 

using expected returns. 
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Appendix 1: Actual and Predicted Prices according to  

Portfolio Formation 
 

 OKOMUOIL JBERGER UPDCREIT 

YEAR 
ACTUAL 

PRICE 
PREDICTED 

PRICE 
ACTUAL 

PRICE 
PREDICTED 

PRICE 
ACTUAL 

PRICE 
PREDICTED 

PRICE 

2015 30.6 37.44156014 43.1 26.50539737 10 10.0393 

2016 60.63 143.0035219 38 37.98880178 10 9.98502 

2017 92 539.233139 30 16.92574341 10 10.9123 

2018 49 19.72871753 20.6 9.912038208 5.4 1.98647 
 

 

 DANGSUGAR                    GUARANTY                  MANARD 
YEAR ACTUAL 

PRICE 
PREDICTED 

PRICE 
ACTUAL 
 PRICE 

PREDICTED 
PRICE 

ACTUAL 
PRICE 

PREDICTED 
PRICE 

 

2015 5.52 5.07375 15.99 11.15786531 2.3  

2016 9.3 18.1045 33.55 109.7531699 2.29 2.279541638 

2017 17.5 39.9858 40.1 40.10460406 2.55 3.02526241 

2018 9.6 5.71211 26 18.22035604 1.8 1.462424462 

 

 

            NEIMETH            CHAMS             DANGCEM            SEPLAT 
YEAR ACTUAL 

PRICE 
PREDICTED 

PRICE 
ACTUAL 

PRICE 
PREDICTED 

PRICE 
ACTUAL 

PRICE 
PREDICTED 

PRICE 
ACTUAL 

PRICE 
PREDICTED 

PRICE 

2015 0.86 0.995520067 0.5 0.610705185 129.83 95.05074212 170.88 102.7304718 

2016 0.71 0.58391298 0.5 0.503904782 205 368.6018781 425 1637.867824 

2017 0.52 0.520045514 0.37 0.610707416 227 256.7829978 635 1463.974779 

2018 0.51 0.535181814 0.23 0.386621797 164 119.2756441 490 269.1038278 
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COMPANY     YEAR     CAPITALIZATION 
         ANNUALIZED 

RETURN 
  ANNUALIZED 

VOLATILITY 

OKOMUOIL 2015 11679481.8 0.201747818 0.002085833 

JBERGER 2015 47776120.23 -0.487998721 0.153089828 

UPDCREIT 2015 990908.3816 0 0 

DANGSUGAR 2015 17681535.24 -0.084191379 0.001701482 

GUARANTY 2015 545595301.9 -0.359589531 0.002028295 

MANARD 2015 13084395.31 -0.266938174 0.001657355 

NEIMETH 2015 343222.8042 0.146356816 0.001868705 

CHAMS 2015 1481231.86 0 0.000162404 

DANGCEM 2015 148378478.3 -0.311793641 0.001393708 

SEPLAT 2015 41901472.8 -0.508837709 0.001606948 
 

 

ARRAGEMENT IN DECENDING ORDER CAPITALIZATION 
GUARANTY 2015 545595301.9 30%  

DANGCEM 2015 148378478.3 GUARANTY, DANCEM & JBERGER 

JBERGER 2015 47776120.23   

SEPLAT 2015 41901472.8 40%  

DANGSUGAR 2015 17681535.24 SEPLAT,DANGSUGAR, MANSARD & OKOMU 

MANARD 2015 13084395.31   

OKOMUOIL 2015 11679481.8 30%  

CHAMS 2015 1481231.86 CHAMS, UPDCREIT & NEIMETH 

UPDCREIT 2015 990908.3816   

NEIMETH 2015 343222.8042   
 

 

 

 

 

 Appendix 2: Portfolio formation according to Capitalization, Annual 

Return and Annual Volatility 
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  ARRAGEMENT IN DECENDING ORDER EXPECTED RETURN 
OKOMUOIL 2015 0.201747818 30% 

NEIMETH 2015 0.146356816 OKOMO, NEIMETH &UPDCREIT 

UPDCREIT 2015 0  

CHAMS 2015 0 40% 

DANGSUGAR 2015 -0.084191379 CHAMS, DANGSUG, GUARANT & MANSARD 

GUARANTY 2015 -0.359589531  

MANARD 2015 -0.266938174 30% 

DANGCEM 2015 -0.311793641 DANGCEM, SEPLAT & JBERGER 

JBERGER 2015 -0.487998721  

SEPLAT 2015 -0.508837709  
 

 

  ARRAGEMENT IN DECENDING ORDER VOLATILITY 
JBERGER 2015 0.153089828 30% 

OKOMUOIL 2015 0.002085833 JBERGER, OKOMU & GUARANTY 

GUARANTY 2015 0.002028295  

NEIMETH 2015 0.001868705 40% 

DANGSUGAR 2015 0.001701482 NEIMETH,  DANGSUGAR, MANSARD & SEPLAT 

MANARD 2015 0.001657355  

SEPLAT 2015 0.001606948 30% 

DANGCEM 2015 0.001393708 DANGCEM, CHAMS & UPDCREIT 

CHAMS 2015 0.000162404  

UPDCREIT 2015 0  
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APPENDIX 3  

Portfolio Formations and Predictions 
 

S/N COMPANY ACTUAL PREDICTED ACTUAL PREDICTED ACTUAL PREDICTED 

2 JBERGER 38 37.988802 34 27.457273 29.53333 25.03151507 

5 GUARANTY 33.55 109.75317 36.825 74.928887 33.21667 56.02604334 

9 DANGCEM 205 368.60188 216 312.69244 198.6667 248.2201733 

  CORRELATION 0.97353   0.989879   0.994015   

                

    2016   2016-2017   2016-2018   

S/N COMPANY ACTUAL PREDICTED ACTUAL PREDICTED ACTUAL PREDICTED 

1 OKOMUOIL 60.63 143.00352 76.315 341.11833 67.21 233.9884595 

4 DANGSUGAR 9.3 18.104468 13.4 29.045118 12.13333 21.26744997 

6 MANARD 2.29 2.2795416 2.42 2.652402 2.213333 2.255742837 

10 SEPLAT 425 1637.8678 530 1550.9213 516.6667 1123.64881 

  CORRELATION 0.99877   0.996531   0.996467   

                

    2016   2016-2017   2016-2018   

S/N COMPANY ACTUAL PREDICTED ACTUAL PREDICTED ACTUAL PREDICTED 

3 UPDCREIT 10 9.9850189 10 10.448667 8.466667 7.627936538 

7 NEIMETH 0.71 0.583913 0.615 0.5519792 0.58 0.546380102 

8 CHAMS 0.5 0.5039048 0.435 0.5573061 0.366667 0.500411332 

  CORRELATION 0.99993   0.999857   0.999847   

                

                

  HIGH CAPITALIZED PORTFOLIO 0.97353   0.989879   0.994015   

  
MODERATE CAPITALIZED 
PORTFOLIO 0.99877   0.996531   0.996467   

   LOW CAPITALIZED PORTFOLIO 0.99993   0.999857   0.999847   
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