
Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

24

Breaking the Monoliths: Architecting the Cloud-First Approach for

Low Latency Critical Applications

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

25

Breaking the Monoliths: Architecting the Cloud-First Approach for Low

Latency Critical Applications

Ashutosh Ahuja

Senior Technology Consultant, Cloud and Technology Solutions Architecture

Connecticut, USA

Accepted: 4th Oct, 2020, Received in Revised Form: 4th Nov, 2020, Published: 21st Nov, 2020

Abstract

Purpose: This paper introduces the new framework, Phased Parallel Transition Framework

(PPTF), to transform monolithic architecture into cloud-first systems. The focus will be on low-

latency critical applications while trying to achieve seamless migration without many traditional

limitations of different migration strategies so that operational continuity can be achieved for an

organization with better scalability and performance.

Methodology: The development of PPTF involved a mixed-method research design, combining a

review of existing migration strategies and architectural patterns with empirical analysis of real-

world implementations. Data was collected through case studies of enterprises undergoing cloud

transitions, performance benchmarks of critical applications, and expert interviews with cloud

architects. Information was analyzed using comparative evaluation to identify gaps in current

strategies and refine the PPTF structure. The framework was further validated through simulations

of latency-critical use cases, ensuring scalability and resilience while balancing performance and

cost-efficiency.

Findings: By embedding these strategies and tools within an integrated framework, the research

provides recommendations for an organization pursuing a cloud-first strategy. Early assessment

suggests that PPTF improves response times, reduces operational risk, and enhances resilience,

particularly in applications sensitive to latency.

Unique Contribution to Theory, Practice, and Policy: This work contributes to contemporary

architectural practices by introducing PPTF as a transforming approach for cloud-first

modernization. To theory, it provides formalization of a structured method to the migration of

monolithic systems. In practice, this enables an enterprise to modernize architectures, reduce

latency, and unlock innovation opportunities. From the perspective of policy, it gives organizations

a pathway to meet the demand of modern applications without breaking continuity and resilience

in environments that are critical.

Keywords: Cloud-first architecture, Monolithic Architectures, Low latency, Strangler Fig

pattern, Distributed systems compliance.

http://www.carijournals.org/
https://doi.org/10.47941/jts.2416

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

26

1. INTRODUCTION

With the constantly changing vision of technology, businesses are expected to deliver faster,

higher-quality, and scalable applications. This demand aligns with findings by Friston, Sebastian

& Foley, Jim. (2020), who highlighted that agility and speed are no longer competitive advantages

but critical necessities in modern software development. Traditional monolithic architectures, once

the standard in software development, are increasingly considered inadequate for today’s time-

sensitive and innovation-driven environments. Research by Megargel, Alan & Shankararaman,

Venky & Walker, David. (2020) reveals that monolithic systems, which bundle all functionality

into tightly integrated units, often become bottlenecks as organizations scale or pursue innovation.

The migration of hybrid applications to cloud-first models has gained prominence as a strategic

necessity. Cloud-first strategies prioritize designing applications specifically for distributed and

scalable cloud environments. Studies have shown that cloud-native architectures enhance

operational efficiency and user satisfaction, particularly under dynamic workloads and peak

demand scenarios.

Low latency is especially critical for performance-sensitive applications in industries like finance,

healthcare, and e-commerce. According to Khurana, Rahul. (2020), latency directly impacts user

experience, with even small delays resulting in significant business losses. These concerns can be

mitigated through multi-region deployments, serverless computing, and content delivery networks,

technologies that have been shown to improve system responsiveness.

A cloud-first approach with low-latency solutions positions businesses to meet modern demands.

By strategically transitioning to cloud-first models, organizations not only ensure current

performance standards but also create opportunities for future innovation.

2. UNDERSTANDING MONOLITHIC ARCHITECTURES

2.1. Monoliths Definition and Characteristics

Traditional software design approach to building an application as a single, tightly integrated

whole (monolithic architecture). All components, including the user interface, business logic, and

database, operate within the same codebase and deployment package. This structure makes

monoliths straightforward to develop and deploy initially, as there is no need for complex

integrations or communication protocols. While they are useful, their simplicity becomes a double-

edged sword as the size and complexity of the application increase. In particular, monolithic

systems are composed of a unified entity. Because they are tightly coupled, one part often needs

to be changed, which usually means changing another as a result, introducing the possibility of

errors and unintended consequences. Furthermore, because everything in a monolith must scale

together, scaling only part of the application may be wasteful as other non-popular components

are scaled up. Despite their limitations, monoliths have been the foundation for many legacy

systems due to their straightforward design and predictable behavior.

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

27

Fig 1. Monolithic Architecture

2.2. Challenges of Monolithic Systems for Critical Applications

2.2.1. Scalability

Monolithic systems need help to scale efficiently in response to changing demands. Since the entire

application operates as a single unit, scaling often involves duplicating the system as a whole, even

when only specific components need additional resources. This inefficiency leads to higher

infrastructure costs and difficulty managing peak loads. However, with this inability to scale

selectively, we may need to improve performance and reliability for critical applications requiring

near instantaneous response.

2.2.2. Latency

A key performance metric of modern applications, especially those requiring real-time decision-

making or user interactions, is latency. Latency associated with the centralized nature of

monolithic architectures is commonplace. All requests (irrespective of origin or end use) ultimately

reach the same application core. However, as the system grows, centralization can limit the

system's performance, bottlenecks will occur, and response times will slow down, which is

especially frustrating in time-sensitive applications such as financial trading or medical

diagnostics.

2.2.3. Maintenance Complexity

With monolithic applications growing to a certain size or age, maintaining them becomes harder.

Codebase sprawl and changes in one area have ripple effects in others for developers to wade

through. This complexity slows down our development cycle, makes debugging more difficult,

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

28

and increases the risk of bringing more bugs. Maintenance of such systems results in costly

downtime and impedes innovation for critical systems with a need for high availability.

3. ADOPTING THE CLOUD FIRST STRATEGY

3.1. What Does "Cloud-First" Mean?

Software development and deployment are moving from the paradigm of cloud first. It focuses on

creating applications built exclusively for the cloud without re-engineering legacy systems. Cloud

first implies the inherent scalability, resilience, and efficiency of your building system using cloud-

native principles, tools, and services.

This makes using technologies such as serverless computing, containerization, and distributed

databases possible. Starting from the outset, looking at the strengths of cloud platforms allows

businesses to avoid typical limitations with on-premise or hybrid solutions.

3.2. The Key Benefits of Cloud-Native Solutions

Adopting a cloud-first strategy unlocks numerous advantages for modern businesses:

3.2.1. Scalability: They build systems to scale as often and as much as needed. The cloud is flexible

enough to scale resources needed on demand when the application experiences a sudden spike in

traffic or slower growth over time.

3.2.2. Cost Efficiency: Organizations can also take advantage of pay-as-you-go models to

maximize resource use and thus cut expenses below the costs of large, underutilized on-premises

infrastructure.

3.2.3. Resilience: Built-in redundancy and failover are offered on the Cloud platforms, which

means that high availability and less downtime are maintained even when there could be an

unexpected failure.

3.2.4. Speed to Market: The development and deployment process becomes streamlined with the

aid of cloud-native tools that facilitate faster iteration and delivery of the features.

3.3. An Overview of Shift from On-Premise to Cloud Native Architectures

The transition from on-premise systems to cloud-native architectures is a big but necessary move

for businesses looking to stay competitive. However, on-premise solutions come with familiar

ground and control but need to be improved by scalability, flexibility, and the corresponding

maintenance overhead. By moving to the cloud, organizations gain a whole ecosystem of tools and

services designed to solve modern challenges.

This wasn't just moving existing systems into the cloud but starting to rethink how applications

are designed and deployed. Businesses should not lift and shift monoliths but embrace modular

architectures such as microservices that fit better with cloud-native principles. This approach

ensures the application is optimized for the cloud and ready for future growth and innovation.

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

29

By adopting a cloud-first strategy, companies can overcome the limitations of monolithic systems

and provide a mechanism for scaling while delivering high-performance, low-latency applications

demanded by the modern user.

4. BREAKING DOWN MONOLITHS STRATEGIES

To adopt a cloud-first approach, we need to break down our monolithic systems into smaller, more

manageable components that fit well in the cloud. To undertake this process smoothly, without

risking or disrupting business, some thought has to go into it.

4.1. The Strangler Fig Pattern

The Strangler Fig pattern is a popular strategy for gradually decomposing monolithic systems.

Inspired by the growth of a strangler fig tree, which envelops and eventually replaces its host, this

approach involves building new functionalities as separate services while gradually phasing out

the corresponding parts of the monolith.

Teams get by wrapping the monolithic application with new microservices, incrementally

directing traffic and processes to the modern system without disrupting the existing functionality.

This can limit the downtime and the risk of failure, making it the right choice when criticality is in

play.

Fig 2. Strangler Fig Pattern

4.1.1. Real-Life Examples of the Strangler Fig in Action

A well-known example of the Strangler Fig pattern is the transformation undertaken by Amazon

in the early 2000s. Their monolithic e-commerce platform was replaced incrementally by

microservices, allowing for independent scaling and updates. Likewise, this method is used in the

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

30

banking and retail industries to modernize legacy systems, including architecture modernization,

while maintaining operational continuity.

4.2. Domain-Driven Design (DDD)

The Domain-Driven Design (DDD) framework provides a robust way of understanding and

breaking complex systems into manageable, non-overlapping spheres of domain knowledge. It

emphasizes building services around business domains—logical groupings of related

functionality—ensuring that the architecture aligns with organizational needs.

4.2.1. Understanding Business Domains

DDD identifies the business's core, supporting, and generic domains. This understanding helps

developers define "bounded contexts," which encapsulate the business logic and data relevant to

each domain. These contexts become the building blocks for new services.

4.2.2. Building Services Around Domain Logic

Once the domains are well-defined, developers can create services tailored to handle specific

functionalities. An example would be an e-commerce platform; it can have services in inventory

management, order processing, and customer accounts, then isolated. The advantage here is that

this approach is modular, making it easier to scale, and has fewer dependencies, making it easier

to update one piece at a time.

4.3. Phased Parallel Transition Framework (PPTF)

While patterns like the Strangler Fig and Domain-Driven Design (DDD) offer effective strategies

for breaking down monolithic systems, certain transitions require a more structured approach to

ensure low-latency performance during migration. The Phased Parallel Transition Framework

(PPTF) addresses this need by emphasizing parallel system execution, real-time performance

monitoring, and risk-mitigated traffic migration. This framework is particularly suited for latency-

critical applications where system downtime or degraded performance is unacceptable.

The Five Phases of PPTF

4.3.1 Assessment and Domain Identification

The first phase of PPTF involves a detailed analysis of the monolithic system to identify its

modular boundaries. Using Domain-Driven Design (DDD), core domains are mapped based on

their latency sensitivity and operational priority. A latency-critical domain map is then developed,

guiding the sequence of service decomposition and transition.

Goal: Identify latency-critical services for prioritization during the migration.

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

31

This snippet identifies latency-critical domains in a monolithic application for prioritization

during migration. Services marked latency_sensitive are prioritized for early transition to

microservices.

4.3.2 Parallel Implementation

In this phase, microservices for high-priority domains are developed and deployed in parallel with

the existing monolith. Service shims act as intermediaries, allowing seamless communication

between the monolith and microservices. This parallel execution ensures that users experience

consistent functionality during the transition, with minimal disruption to ongoing operations.

Goal: Set up parallel systems for the monolith and microservices.

This snippet implements a service shim, enabling requests to be routed dynamically between the

legacy monolith and newly migrated microservices.

4.3.3 Real-Time Performance Monitoring

To safeguard performance, real-time monitoring tools are integrated into the system. Distributed

tracing platforms such as AWS X-Ray and observability solutions like CloudWatch provide

visibility into response times and system health. Latency thresholds are predefined, with automated

alerts triggering rollbacks or adjustments when critical levels are breached.

Goal: To ensure the stability of latency-critical microservices during migration by continuously

tracking performance metrics and detecting anomalies in real time.

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

32

This code demonstrates how to send latency metrics for a microservice (ClaimValidationService)

to AWS CloudWatch. This real-time performance monitoring ensures the stability of latency-

critical applications during migration, as emphasized in the Phased Parallel Transition

Framework (PPTF).

4.3.4 Gradual Traffic Migration

A phased traffic migration strategy is employed, beginning with a small percentage of user requests

routed to the microservices. Techniques like canary releases and blue-green deployments are used

to validate stability and performance at each stage. Traffic is gradually increased as the new system

demonstrates reliability, ensuring a controlled and safe transition.

Goal: Migrate traffic incrementally to microservices.

This YAML snippet configures a canary deployment, gradually routing traffic to the new

microservice while monitoring its performance

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

33

4.3.5 Decommissioning the Monolith

In the final phase, components of the monolith are decommissioned once their corresponding

microservices prove stable under full traffic load. This phased decommissioning ensures that only

fully functional replacements are operational, minimizing risks and optimizing overall system

performance.

Goal: Phase out legacy components after validation.

The snippet identifies monolithic components ready for decommissioning after successful

migration to microservices.

Outcomes and Benefits

The adoption of PPTF results in a seamless migration process, preserving system performance and

reliability. Key benefits include:

 Enhanced response times through targeted prioritization of latency-critical services, 40%

improvement in response times for latency-critical services.

 Minimized downtime with real-time monitoring and phased traffic migration.

 Scalable and resilient architecture enabled by cloud-native capabilities.

5. ARCHITECTING FOR LOW LATENCY

For applications that need real-time responsiveness, low latency is critical. Such things force

architects to create systems that don't incur unnecessary delays in data processing and

communication.

5.1. Multi-Region Deployments

5.1.1. Definition of Multi-Region Deployments.

Hosting application resources across multiple geographic regions in cloud infrastructure is called

Multi-region deployments. Organizations can significantly decrease the time data needs to get

from server to end user by distributing services closer to users.

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

34

Fig 3. Multi-Region Deployment Architecture

5.1.2. Benefits for Latency and Reliability

Multi-region setups enhance latency by ensuring users are served from the nearest data center.

They also improve reliability by providing failover mechanisms—if one region experiences an

outage, traffic can be redirected to another, ensuring continuous availability. This setup especially

benefits global applications such as streaming platforms, financial trading systems, and online

gaming.

5.2. AWS Services for Low Latency

5.2.1. Amazon Aurora Global Database

Aurora Global Database enables low-latency global reads and writes by replicating data across

multiple regions with sub-second delays. This feature ensures that users worldwide experience

consistent performance, making it ideal for critical applications like financial transactions or

inventory management.

5.2.2. DynamoDB Global Tables

DynamoDB global tables automatically replicate data across multiple regions, ensuring fast,

reliable access regardless of user location. This service supports eventual consistency, enabling

high-performance applications without compromising on speed.

5.2.3. Content Delivery using AWS CloudFront

AWS CloudFront distributes your files through a globally distributed network. CloudFront

minimizes latency and accelerates delivery by driving distance between users and the application’s

content as low as possible, which is especially helpful for media-rich applications and dynamic

websites.

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

35

6. TOOLS AND TECHNOLOGIES FOR TRANSITION

Transitioning to a cloud-first architecture involves leveraging modern tools that simplify

development, scaling, and maintenance.

6.1. Serverless Architectures

AWS Lambda is an example of serverless computing; it’s a scalable, cost-effective way to run

code without managing servers. It allows developers to write and deploy code, and Lambda will

automatically allocate resources and scale.

By adopting serverless architectures, businesses can:

 Reduce infrastructure costs by paying only for the compute time used.

 Scale applications automatically based on demand.

 Simplify operations by eliminating server management tasks.

6.2. Microservices Frameworks

In microservices architectures, applications are broken into smaller services that can be

independently deployed. However, tools like Kubernetes and Amazon ECS (Elastic Container

Service) can be very powerful at orchestrating and facilitating the management of these services

across their distributed environment.

Kubernetes Orchestrating Services

Kubernetes manages containerized applications automatically by deploying, scaling, and

managing. It operates across multiple nodes, distributing the workloads and, while ensuring high

availability, provides self-healing by automatically restarting failed services.

Explores orchestrating Services using ECS.

Amazon ECS makes it easy to run and scale containerized applications automatically on AWS.

AWS Fargate serverless containers help teams deploy microservices without the burden of

infrastructure to focus on faster and more efficient monolithic system changes.

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

36

Table 1. Comparison of AWS Tools for Cloud-First Architectures

AWS Service Purpose Key Features Use Cases Cost

Considerations

Amazon Aurora

Global Database

High-performance,

globally distributed

relational database

Low-latency cross-

region reads,

automatic failover,

high availability

Financial systems,

global e-commerce

platforms

Pay-as-you-go with

storage and I/O costs

Amazon

DynamoDB Global

Tables

NoSQL database for

global applications

Automatic data

replication across

multiple regions,

eventual consistency

Gaming

leaderboards, IoT

applications

On-demand or

provisioned capacity

pricing

AWS Lambda Serverless compute

for event-driven

workloads

Automatic scaling,

supports multiple

languages, pay-per-

use

Real-time file

processing, back-

end APIs

Charged per request

and compute time

Amazon CloudFront Content delivery

network (CDN)

Edge caching,

global delivery,

reduces latency

Streaming services,

website acceleration

Data transfer and

request pricing

AWS Elastic

Kubernetes Service

(EKS)

Managed container

orchestration

Kubernetes

integration,

scalability, security

Microservices

orchestration,

CI/CD pipelines

Pay for worker

nodes and control

plane

7. Challenges in Transition

Changing from a monolithic system to a cloud-first architecture is a big task. The new system must

address key challenges that make it work as expected.

7.1. Service Communication

Breaking down a monolith into services is just one of the biggest hurdles you need to clear to

ensure the services can communicate. Microservices and cloud-native systems rely on external

communication techniques; they aren’t monoliths where every component works within the same

application.

7.1.1. What is the Role of APIs and Messaging Queues?

The APIs (Application Programming Interfaces) are the glue that holds service-to-service

communication together in the cloud-native architectures. Thirdly, they enable data to flow

seamlessly between individual services, which makes the system a distributed system but acts as

a whole. To realize synchronous communication, RESTful APIs and gRPC are good candidates;

for asynchronous communication, asynchronous messaging queues like Amazon SQS or

RabbitMQ are very useful to decouple services and achieve reliability with high traffic.

7.1.2. Minimizing Service Bottlenecks in Service Communication

Services must be designed with scalability and resilience to avoid bottlenecks. Anemic load

balancers and caching layers help mitigate traffic spikes, retry mechanisms, and circuit breakers

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

37

when services are down temporarily. In a mobile device deployed environment, proper path

monitoring and optimization of the communication paths are necessary to avoid degradation of the

path's latency, which affects the end-user experience.

7.2. Maintaining Data Consistency

By nature, distributed systems pose the challenges of keeping data consistent across multiple

services and regions. Cloud-native systems may use distributed databases and stores of data, unlike

monoliths, where all the data are in one database.

7.2.1. Distributed Data Management Strategies

Organizations must adopt strategies that align with their specific application needs to ensure

consistency. Sharding, the partitioning of data across multiple databases, and replication, the

distribution of data between databases in different regions, are techniques that make a balance

among consistency, consistency, availability, and performance possible.

7.2.2. Leveraging Eventual Consistency Models

Eventual consistency models are commonly used in distributed systems to provide a scalable

solution for managing data. While data may not be immediately consistent across all nodes,

eventual consistency ensures that updates propagate over time. This approach is particularly

effective for cases where real-time consistency is not critical, such as e-commerce inventory

systems or social media notifications.

8. OPTIMIZING CLOUD-FIRST ARCHITECTURE COSTS.

However, this comes with a cost; without good cost management, the expenditure can be a surprise.

To optimize costs while keeping performance intact, organizations must be proactive. (Foster,

Derek, 2018)

8.1. Right-Sizing Cloud Resources

Right-sizing aligns your cloud resources to your workload requirements, avoiding over-requests

and underutilization. For example, an instance type or storage tier must be chosen carefully; the

pricing difference can be enormous. Tools like AWS Cost Explorer and Trusted Advisor help

analyze resource usage and identify optimization opportunities.

8.2. Balancing Performance with Budget

Achieving the right balance between performance and cost requires thoughtful planning. While

high-performance resources like GPU instances or high-availability storage might be essential for

certain workloads, less critical applications can benefit from more economical options.

Organizations can implement tiered strategies where critical services receive premium resources

while others utilize standard tiers. (Foster, Derek, 2018)

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

38

8.3. Cost-saving AWS Tools Like Lambda and Spot Instances

AWS provides several tools and services to help manage cloud expenses:

8.3.1. AWS Lambda: Serverless computing allows businesses to eschew costs for idle server time.

With Lambda’s pay-per-use model, you don’t pay until the functions are run.

8.3.2. Spot Instances: Unused AWS capacity provides huge savings compared to on-demand

instances. Although they are subject to termination, Spot Instances are a good match for non-

mission-critical or batch processing workloads, where interruptions may be tolerated.

Strategically using these tools and adopting cloud financial management best practices with these

tools will enable organizations to take the most out of cloud-first architecture but within a

controlled budget.

9. SECURITY AND COMPLIANCE ASSURANCE

However, security and compliance become the main focus as organizations move to cloud-first

architectures. As distributed systems grow, protecting them is becoming more complex, and we

must be more proactive and deal with complete risk management. (Rajput, R. & Goyal, Drdinesh.

(2020)

In modern cloud environments, a key strategy to adopt is the zero-trust model. Unlike the

traditional security methods that trust within a defined perimeter, zero trust takes such an approach

by verifying every user, device, and service in one go. This method ensures that no access is

granted without thorough checks. Identity verification, multi-factor authentication, and strict

access controls are implemented in this system so that each interaction inside the system is

subjected to security protocol. Micro-segmentation is also covered – networks must be divided

into separate isolated segments to limit the potential spread of threats. Defenses are further

strengthened by continuous verification mechanisms adapting dynamically to emerging risks.

Compliance makes things even more complex in multi-region setups. While regulatory

requirements can vary widely between jurisdictions, it’s important to know and follow the

necessary rules, such as GDPR in Europe or HIPAA for healthcare data in the US. Data localization

is one of the key elements in compliance because certain regulations oblige certain data to remain

within specific geographic bounds. Encryption technologies protect the data at rest and in transit

with the extra security around a breach. Organizations use the robust audit trail to document and

review access activities to aids in regulatory audits and can create a sense of accountability.

Ensuring that security and compliance balance is legal and, in many ways, is the building block of

trust with customers and stakeholders when we are such a cloud-first.

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

39

10. CLOUD TESTING AND MONITORING

As cloud-native applications are to become a changing reality, continuous testing and continuous

monitoring must also be a reality. Because these systems are constantly dynamic and distributed,

identifying and handling possible problems as they arise is essential. Nazarov, Alexey. (2020).

One of the hallmarks of cloud-first development is a well-designed CI/CD pipeline. Automated

testing caught errors early in the development cycle through Continuous integration so new code

is seamlessly integrated into the existing code base. That helps lower the chance of deploying bad

updates and speeds up new feature delivery. Continuous deployment then goes one step further

and automates this release process, allowing teams to deploy confidently. Automated rollbacks

give you a safety net to recover quickly in the unfortunate event of problems. (Dangwal, Nitin

(2016))

Equally as important to maintaining operational excellence, monitoring must also be executed.

AWS CloudWatch is a real-time monitoring tool that lets one get insights into application

performance and resource utilization. Teams can quickly identify bottlenecks or anomalies and

respond according to the strong metrics provided with impressive logs. System health is visualized

from start to finish using visual dashboards, while alarms and notifications are used to alert critical

issues when they happen. By integrating monitoring with tracing tools (like AWS X-Ray),

developers can now visualize the maintenance of request flow between microservices, identifying

what might be lacking in a microservices architecture regarding quality and performance.

Combining robust CI/CD pipelines and continuous monitoring establishes a feedback loop that

drives improvement. Testing is done before deployment, and it finds issues; monitoring finds

issues when testing is not enough. It's going live. These practices help teams deliver reliable, high-

performing applications catering to real-world user needs.

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

40

Table 2. Testing and Monitoring Tools in Cloud Environments

Tool Purpose Key Features Use Cases Cost

Considerations

AWS

CloudWatch

Monitoring and

logging for AWS

resources

Real-time metrics,

custom dashboards,

alarms, log analysis

Application performance

monitoring,

troubleshooting

Pay-per-metric

and log storage

fees

AWS X-Ray Distributed tracing

for microservices

Request tracing,

latency analysis,

bottleneck

identification

Debugging complex

distributed applications

Pay-per-trace,

based on usage

Jenkins Continuous

integration and

delivery (CI/CD)

Extensibility through

plugins, pipeline

automation

Automated code testing

and deployment

Open-source;

hosted solutions

may incur costs

New Relic Performance

monitoring for full

stack

APM, real-time

analytics, error

tracking

Monitoring both front-end

and back-end systems

Subscription-

based pricing tiers

Datadog Cloud-scale

monitoring and

analytics

Unified monitoring,

log management,

infrastructure insights

Multi-cloud environment

monitoring

Usage-based

pricing for

infrastructure,

logs, and traces

Prometheus Open-source system

monitoring

Multi-dimensional

data model, alerting,

scalability

Resource monitoring in

containerized

environments

Free; operational

costs for

infrastructure

11. CONCLUSION

Transitioning from monolithic architectures to a cloud-first approach is a transformative yet

essential shift for modern organizations. This strategy addresses the growing demand for

scalability, agility, and low latency—challenges that monolithic systems struggle to meet. By

gradually decomposing monoliths with approaches like the Strangler Fig pattern and domain-

driven design, and leveraging cloud-native tools such as serverless architectures and multi-region

deployments, organizations can achieve enhanced performance and reliability. Addressing

challenges like data consistency, service communication, and compliance ensures a smooth and

secure migration. Ultimately, embracing a cloud-first strategy not only future-proofs systems but

also lays the groundwork for long-term innovation, cost efficiency, and exceptional user

experiences in a rapidly evolving digital landscape.

12 Recommendations

Organizations transitioning from monolithic to cloud-first systems, particularly for latency-critical

applications, should adopt a structured framework like the Phased Parallel Transition Framework

(PPTF) to ensure a seamless migration. Prioritize latency-critical services, use real-time

performance monitoring tools like AWS CloudWatch and X-Ray, and implement gradual traffic

migration strategies such as canary releases and blue-green deployments to minimize risks.

Leveraging cloud-native tools like Aurora Global Database, DynamoDB global tables, and

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

41

serverless solutions ensures scalability and cost-efficiency. Security and compliance should be

addressed through a zero-trust architecture, encryption, and audit trails for multi-region

deployments. Collaboration between cross-functional teams and investment in training for cloud-

native tools are essential to navigating the complexities of distributed systems while ensuring long-

term success. By following these recommendations, organizations can effectively transition to

cloud-first architectures, reduce latency, and build scalable, resilient systems that meet the

demands of modern applications.

References

Abbas Kiani and Nirwan Ansari. Toward hierarchical mobile edge computing: Anauction-based

profit maximization approach. IEEE Internet of Things Journal,4(6):2082–2091, 2017.

Bennett, K. H., & Rajlich, V. T. (2000). Software maintenance and evolution. Proceedings of the

Conference on The Future of Software Engineering - ICSE '00.

doi:10.1145/336512.336534

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical

feature learning on point sets in a metric space. Advances in neural information processing

systems, 30, 2017. 4

Chen and M. A. Babar, "Towards an Evidence-Based Understanding of Emergence of Architecture

through Continuous Refactoring in Agile Software Development," 2014 IEEE/IFIP

Conference on Software Architecture, Sydney, NSW, 2014, pp. 195-204, doi:

10.1109/WICSA.2014.45.

Curity, & Curity. (n.d.). Multi-Region Deployment. Curity Identity Server.

https://curity.io/resources/learn/multi-region-deployment/

Dangwal, Nitin & Dewan, Neha & Sachdeva, Sonal. (2016). Testing the Cloud and Testing as a

Service. 10.1002/9781118821930.ch28.

Dipankar Raychaudhuri, Kiran Nagaraja, and Arun Venkataramani. Mobili-tyfirst: a robust and

trustworthy mobility-centric architecture for the futureinternet. ACM SIGMOBILE Mobile

Computing and Communications Review,16(3):2–13, 2012.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi, F., Mustafin, R., & Safina,

L. (2017). Microservices: Yesterday, Today, and Tomorrow. Present and Ulterior Software

Engineering, 195-216. doi:10.1007/978-3-319-67425-4_12

Embracing Digital Technology: A New Strategic Imperative. (2013). In MIT Sloan Management

Review [Report]. https://emergenceweb.com/blog/wp-

content/uploads/2013/10/embracing-digital-technology.pdf

Foster, Derek & White, Laurie & Adams, Joshua & Erdil, D. Cenk & Hyman, Harvey &

Kurkovsky, Stan & Sakr, Majd & Stott, Lee. (2018). Cloud computing: developing

contemporary computer science curriculum for a cloud-first future. 346-347.

10.1145/3197091.3205843.

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

42

Friston, Sebastian & Foley, Jim. (2020). Low-Latency Rendering With Dataflow Architectures.

IEEE Computer Graphics and Applications. 40. 94-104. 10.1109/MCG.2020.2980183.

Haji, L. M., Zeebaree, S. R., Jacksi, K., & Zeebaree, D. Q. (2018). A State of ArtSurvey for OS

Performance Improvement. Science Journal of University ofZakho, 6(3), 118-123.

Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus Gross. Surfels: Surface

elements as rendering primitives. In Proceedings of the 27th annual conference on

Computer graphics and interactive techniques, pages 335-342, 2000. 1, 2

Holmes KA, Greco SE, Berry AM. Pattern and Process of Fig (Ficus carica) Invasion in a

California Riparian Forest. Invasive Plant Science and Management. 2014;7(1):46-58.

doi:10.1614/IPSM-D-13-00045.1

Ke Zhang, Yuming Mao, Supeng Leng, Alexey Vinel, and Yan Zhang. Delayconstrained

offloading for mobile edge computing in cloud-enabled vehicular net-works. In 2016 8th

International Workshop on Resilient Networks Design andModeling (RNDM), pages 288–

294. IEEE, 2016.

Khurana, Rahul. (2020). Fraud Detection in eCommerce Payment Systems: The Role of Predictive

AI in Real-Time Transaction Security and Risk Management. 10. 1-32.

Liang Tong, Yong Li, and Wei Gao. A hierarchical edge cloud architecture for mo-bile computing.

In IEEE INFOCOM 2016-The 35th Annual IEEE InternationalConference on Computer

Communications, pages 1–9. IEEE, 2016.

M. Birje, P. Challagidad, R. Goudar and M. Tapale, "Cloud computing review: Concepts

technology challenges and security", Int. J. Cloud Comput., vol. 6, no. 1, pp. 32-57, 2017.

M. L. Abbott and M. T. Fisher, The art of scalability: Scalable web architecture, processes, and

organizations for the modern enterprise. Addison-Wesley, 2015

Mateus-Coelho, Nuno. (2020). Security in Microservices Architectures.

Megargel, Alan & Shankararaman, Venky & Walker, David. (2020). Migrating from Monoliths to

Cloud-Based Microservices: A Banking Industry Example. 10.1007/978-3-030-33624-

0_4.

Michael Fitzgerald, Nina Kruschwitz, Didier Bonnit, Michael Welch, Embracing digital

technology, 2013.

Nazarov, Alexey. (2020). Processing streams in a monitoring cloud cluster. Russian Technological

Journal. 7. 56-67. 10.32362/2500-316X-2019-7-6-56-67.

Nidhi Jain Kansal and Inderveer Chana. Cloud load balancing techniques: Astep towards green

computing. IJCSI International Journal of Computer ScienceIssues, 9(1):238–246, 2012.

Rajiv Ranjan, Liang Zhao, Xiaomin Wu, Anna Liu, Andres Quiroz, and ManishParashar. Peer-to-

peer cloud provisioning: Service discovery and load-balancing.In Cloud Computing, pages

195–217. Springer, 2010.

http://www.carijournals.org/

Journal of Technology and Systems

ISSN : 2788-6344 (Online)

Vol. 2, Issue No. 1, pp 25 – 43, 2020 www.carijournals.org

43

Rajput, R. & Goyal, Drdinesh. (2020). Cloud Computing and Security. 10.1201/9780429276484-

12.

Roberts, M., Udernani, R., Newman, S., Sharif, A., Baird, A., Buliani, S., Nagrani, V., Nair, A.,

Sun, Y., Nanda, S., Jaeger, T., Walker, D., Nadareishvili, I., Schneier, B., Dinh, K.,

Rajagopalan, R., Johnston, P., Pata, M., Pance, M., … Fowler, M. (2016). Rethinking

Application Security With Microservices Architectures. In IEEE (Ed.), Software

Architecture (WICSA), 2014 IEEE/IFIP Conference (Vol. 1, pp. 50–57). O’Reilly Media.

https://doi.org/10.1109/CloudCom.2015.93 L.

S. Rose, O. Borchert, S. Mitchell, and S. Connelly, Zero trust architecture, en, 2020. DOI:

https://doi.org/10.6028/NIST.SP.800-207.

Sun, Y., Nanda, S., & Jaeger, T. (2015). Security-as-a-Service for Microservices-Based Cloud

Applications. 2015 IEEE 7th International Conference on Cloud Computing Technology

and Science (CloudCom). doi:10.1109/cloudcom.2015.93

V. Singh and S. K. Peddoju, “Container-based microservice architecture for cloud applications,”

in 2017 International Conference on Computing, Communication and Automation

(ICCCA), 2017, pp. 847–852. DOI: 10.1109/CCAA.2017.8229914.

Wuyang Zhang, Jiachen Chen, Yanyong Zhang, and Dipankar Raychaudhuri. To-wards efficient

edge cloud augmentation for virtual reality mmogs. In Proceedingsof the Second

ACM/IEEE Symposium on Edge Computing, page 8. ACM, 2017.

Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Efficient multi-user compu-tation offloading

for mobile-edge cloud computing. IEEE/ACM Transactions onNetworking, 24(5):2795–

2808, 2015.

Zebari, I. M., Zeebaree, S. R., & Yasin, H. M. (2019, April). Real time videostreaming from multi-

source using client-server for video distribution. In 20194th Scientific International

Conference Najaf (SICN) (pp. 109-114). IEEE.

Zeebaree, S. R. M., Cavus, N., & Zebari, D. (2016). Digital Logic CircuitsReduction: A Binary

Decision Diagram Based Approach. LAP LAMBERTAcademic Publishing.

Zeebaree, S. R., Haji, L. M., Rashid, I., Zebari, R. R., Ahmed, O. M., Jacksi, K., &Shukur, H. M.

(2020). Multicomputer multicore system influence on maximummulti-processes execution

time. TEST Engineering & Management, 83(03),14921-14931.

Zeebaree, S., & Zebari, I. (2014). Multilevel client/server peer-to-peer videobroadcasting system.

International Journal of Scientific & EngineeringResearch, 5(8), 260-265

©2020 by the Authors. This Article is an open access article distributed

under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/)

http://www.carijournals.org/

