Rumen Microflora: A Symbiotic Powerhouse for Digestion and Biodegradation - Unveiling Microbial Warriors in the Fight against Plastic Pollution
DOI:
https://doi.org/10.47941/ijbs.1926Keywords:
Symbiotic relationship, Ruminants, Rumen microflora, Digestion, Nutrient acquisition, Microbial fermentation, Volatile fatty acids, Plastic pollution, Waste management, Plastic degradation, Bioremediation, Anaerobic environments, Enzymes, Efficiency, Environmental sustainability.Abstract
Purpose: The symbiotic relationship between ruminants and their rumen microflora plays a pivotal role in efficient digestion and nutrient acquisition. This complex ecosystem, comprising bacteria, archaea, protozoa, and fungi, collaborates to break down plant materials, releasing essential nutrients for ruminant growth and development. Additionally, microbial fermentation produces volatile fatty acids, serving as a primary energy source, and synthesizes vital vitamins and amino acids, enriching the ruminant diet. Amidst this biological marvel, the global plastic pollution crisis poses a significant threat to ecosystems.
Methodology: Traditional waste management methods are inadequate in addressing the mounting accumulation of plastic waste, necessitating innovative solutions. The discovery of plastic-degrading capabilities within rumen microflora offers a promising avenue for plastic waste management. Research has identified that rumen microbes are equipped with enzymes capable of degrading certain types of plastics, holding potential for bioremediation applications, particularly in anaerobic environments such as landfills.
Findings: Rumen microbes, through their natural enzymatic processes, can break down plastics in environments that mimic their natural habitat, such as anaerobic conditions found in landfills. This discovery highlights the potential for utilizing these microbes in bioremediation to address plastic pollution. However, challenges remain in optimizing plastic degradation by bacteria, including enhancing the efficiency and scalability of these processes.
Unique contribution to theory, policy and practice: To fully realize the potential of rumen microflora in combating plastic pollution, interdisciplinary collaboration and concerted efforts are essential. Research should focus on optimizing the plastic-degrading efficiency of these microbes, scaling up bioremediation processes, and addressing ecological concerns associated with their application. Through harnessing the power of nature and innovative biotechnological approaches, we can mitigate plastic pollution and promote environmental sustainability.
Downloads
References
Ali, S. S., Elsamahy, T., Koutra, E., Kornaros, M., El-Sheekh, M., Abdelkarim, E. A., Zhu, D., & Sun, J. (2021). Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal. Science of the Total Environment, 771, 144719. https://doi.org/10.1016/j.scitotenv.2020.144719
Amoo, A. O., Ahmed, S., & A. Haruna. (2023). Combinatorial Effect of Process Parameters on the Rate of Biogas Production and Rate of Substrate Degradation Following Anaerobic Digestion of Food Waste and Rumen Content. Journal of Applied Science and Environmental Management (Print), 27(3), 449-455. https://doi.org/10.4314/jasem.v27i3.7
Aragaw, T. A. (2020). Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Marine Pollution Bulletin, 159(111517), 111517. https://doi.org/10.1016/j.marpolbul.2020.111517
Arqus, J. L., RodrÃguez, E., Langa, S., Landete, J. M., & Medina, M. (2015). Antimicrobial Activity of Lactic Acid Bacteria in Dairy Products and Gut: Effect on Pathogens. BioMed Research International, 2015, 1-9. https://doi.org/10.1155/2015/584183
Ban, Y., & Guan, L. L. (2021). Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. Journal of Animal Science and Biotechnology, 12(1). https://doi.org/10.1186/s40104-021-00630-x
Bharanidharan, R., Lee, C. H., Thirugnanasambantham, K., Ibidhi, R., Woo, Y. W., Lee, H.-G., Kim, J. G., & Kim, K. H. (2021). Feeding Systems and Host Breeds Influence Ruminal Fermentation, Methane Production, Microbial Diversity and Metagenomic Gene Abundance. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.701081
Blair, E. M., Dickson, K. L., & O'Malley, M. A. (2021). Microbial communities and their enzymes facilitate degradation of recalcitrant polymers in anaerobic digestion. Current Opinion in Microbiology, 64, 100-108. https://doi.org/10.1016/j.mib.2021.09.008
Blumer-Schuette, S. E. (2020). Insights into Thermophilic Plant Biomass Hydrolysis from Caldicellulosiruptor Systems Biology. Microorganisms, 8(3), 385. https://doi.org/10.3390/microorganisms8030385
Blumer-Schuette, S. E., Lewis, D. L., & Kelly, R. M. (2010). Phylogenetic, Microbiological, and Glycoside Hydrolase Diversities within the Extremely Thermophilic, Plant Biomass-Degrading Genus Caldicellulosiruptor. Applied and Environmental Microbiology, 76(24), 8084-8092. https://doi.org/10.1128/aem.01400-10
Borja Lagoa-Costa, Kennes, C., & Veiga, M. C. (2022). Influence of feedstock mix ratio on microbial dynamics during acidogenic fermentation for polyhydroxyalkanoates production. Journal of Environmental Management, 303, 114132-114132. https://doi.org/10.1016/j.jenvman.2021.114132
Budwill, K., Fedorak, P. M., & Page, W. J. (1996). Anaerobic microbial degradation of poly (3-hydroxyalkanoates) with various terminal electron acceptors. Journal of Environmental Polymer Degradation, 4(2), 91-102. https://doi.org/10.1007/bf02074870
CF, S. F., Rebello, S., Mathachan Aneesh, E., Sindhu, R., Binod, P., Singh, S., & Pandey, A. (2021). Bioprospecting of gut microflora for plastic biodegradation. Bioengineered, 12(1), 1040-1053. https://doi.org/10.1080/21655979.2021.1902173
Denman, S. E., Morgavi, D. P., & McSweeney, C. S. (2018). Review: The application of omics to rumen microbiota function. Animal, 12, s233-s245. https://doi.org/10.1017/s175173111800229x
Galyon, H., Vibostok, S., Duncan, J., Ferreira, G., Whittington, A., & Cockrum, R. (2023). Long-term in situ ruminal degradation of biodegradable polymers in Holstein dairy cattle. JDS Communications, 4(2), 70-74. https://doi.org/10.3168/jdsc.2022-0319
Galyon, H., Vibostok, S., Duncan, J., Ferreira, G., Whittington, A., Havens, K., McDevitt, J., & Cockrum, R. (2022). Digestibility Kinetics of Polyhydroxyalkanoate and Poly(butylene succinate-co-adipate) after In Vitro Fermentation in Rumen Fluid. Polymers (Basel), 14(10), 2103-2103. https://doi.org/10.3390/polym14102103
Gambarini, V., Pantos, O., Kingsbury, J. M., Weaver, L., Handley, K. M., & Lear, G. (2021). Phylogenetic Distribution of Plastic-Degrading Microorganisms. MSystems, 6(1). https://doi.org/10.1128/mSystems.01112-20
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/sciadv.1700782
Guo, W., Nguyen, A. V., Abu Hasan Johir, Ngo, H. H., Chaves, A. V., & Guo, W. (2019). Application of rumen and anaerobic sludge microbes for bio harvesting from lignocellulosic biomass. 228, 702-708. https://doi.org/10.1016/j.chemosphere.2019.04.159
Guo, Z., Yi, D., Hu, B., Shi, Y., Xin, Y., Gu, Z., Liu, H., & Zhang, L. (2021). The alteration of gut microbiota by bioactive peptides: a review. Systems Microbiology and Biomanufacturing (Print), 1(4), 363-377. https://doi.org/10.1007/s43393-021-00035-x
Ihoeghian, N. A., Amenaghawon, A. N., Ajieh, M. U., Oshoma, C. E., Ogofure, A., Erhunmwunse, N. O., Edosa, V. I. O., Tongo, I., Obuekwe, I. S., Isagba, E. S., Emokaro, C., Ezemonye, L. I. N., Lag-Brotons, A. J., Semple, K. T., & Martin, A. D. (2022). Anaerobic co-digestion of cattle rumen content and food waste for biogas production: Establishment of co-digestion ratios and kinetic studies. Bioresource Technology Reports, 18, 101033. https://doi.org/10.1016/j.biteb.2022.101033
Islam, M. M., Fernando, S. C., & Saha, R. (2019). Metabolic Modeling Elucidates the Transactions in the Rumen Microbiome and the Shifts Upon Virome Interactions. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02412
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic Waste Inputs from Land into the Ocean. Science, 347(6223), 768-771. https://doi.org/10.1126/science.1260352
Kamran Khalili Ghadikolaei, Javad Gharechahi, Kamahldin Haghbeen, Kambiz Akbari Noghabi, Ghasem Hosseini Salekdeh, & Hossein Shahbani Zahiri. (2018). A cold-adapted endoglucanase from camel rumen with high catalytic activity at moderate and low temperatures: an anomaly of truly cold-adapted evolution in a mesophilic environment. Extremophiles, 22(2), 315-326. https://doi.org/10.1007/s00792-018-0999-6
Khandare, S. D., Chaudhary, D. R., & Jha, B. (2021). Marine bacterial biodegradation of low-density polyethylene (LDPE) plastic. Biodegradation, 32(2), 127-143. https://doi.org/10.1007/s10532-021-09927-0
Krause, D. O., Denman, S. E., Mackie, R. I., Morrison, M., Rae, A. L., Attwood, G. T., & McSweeney, C. S. (2003). Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiology Reviews, 27(5), 663-693. https://doi.org/10.1016/s0168-6445(03)00072-x
Kraus, D., Nagaraja, T. G., Wright, A.-D. G., & Callaway, T. R. (2013). Board-invited review: Rumen microbiology: Leading the way in microbial ecology1,2. Journal of Animal Science, 91(1), 331-341. https://doi.org/10.2527/jas.2012-5567
Kumar, M., Mohapatra, S., & Nayak, S. (2020). Green synthesis of nanoparticles and its potential application for the degradation of environmental pollutants. In S. Mohapatra & S. Nayak (Eds.), Bioremediation and Biotechnology (pp. 47-72). CRC Press. https://doi.org/10.1201/9781003003988-4
Liu, K., Zhang, Y., Yu, Z., Xu, Q., Zheng, N., Zhao, S., Huang, G., & Wang, J. (2021). Ruminal microbiota-host interaction and its effect on nutrient metabolism. Animal Nutrition, 7(1), 49-55. https://doi.org/10.1016/j.aninu.2020.12.001
Mulat, D. G., Huerta, S. G., Kalyani, D., & Horn, S. J. (2018). Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii. Biotechnology for Biofuels, 11(1). https://doi.org/10.1186/s13068-018-1025-z
Nagaraja, T. G. (2016). Microbiology of the Rumen. Rumenology, 39-61. https://doi.org/10.1007/978-3-319-30533-2_2
Newbold, C. J., & Ramos-Morales, E. (2020). Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host. Animal, 14(S1), s78-s86. https://doi.org/10.1017/s1751731119003252
Penner, G. B., Steele, M. A., Aschenbach, J. R., & McBride, B. W. (2011). RUMINANT NUTRITION SYMPOSIUM: Molecular adaptation of ruminal epithelia to highly fermentable diets1. Journal of Animal Science, 89(4), 1108-1119. https://doi.org/10.2527/jas.2010-3378
Quartinello, F., Kremser, K., Schoen, H., Tesei, D., Ploszczanski, L., Nagler, M., Podmirseg, S. M., Insam, H., Piñar, G., Sterflingler, K., Ribitsch, D., & Guebitz, G. M. (2021). Together Is Better: The Rumen Microbial Community as Biological Toolbox for Degradation of Synthetic Polyesters. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.684459
Rahimi, A., & GarcÃa, J. M. (2017). Chemical recycling of waste plastics for new materials production. Nature Reviews Chemistry, 1(6), 0046. https://doi.org/10.1038/s41570-017-0046
Sarker, R. K., Chakraborty, P., Paul, P., Chatterjee, A., & Tribedi, P. (2020). Degradation of low-density poly ethylene (LDPE) by Enterobacter cloacae AKS7: a potential step towards sustainable environmental remediation. Archives of Microbiology, 202(8), 2117-2125. https://doi.org/10.1007/s00203-020-01926-8
Skariyachan, S., Taskeen, N., Kishore, A. P., Krishna, B. V., & Naidu, G. (2021). Novel consortia of Enterobacter and Pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene. Journal of Environmental Management, 284, 112030. https://doi.org/10.1016/j.jenvman.2021.112030
Sun, Y., Ren, X., Rene, E. R., Wang, Z., Zhou, L., Zhang, Z., & Wang, Q. (2021). The degradation performance of different microplastics and their effect on microbial community during composting process. Bioresource Technology, 332, 125133. https://doi.org/10.1016/j.biortech.2021.125133
Viljakainen, V. R., & Hug, L. A. (2021). New approaches for the characterization of plastic-associated microbial communities and the discovery of plastic-degrading microorganisms and enzymes. Computational and Structural Biotechnology Journal, 19, 6191-6200. https://doi.org/10.1016/j.csbj.2021.11.023
Watkins, E. R., & Roberts, H. (2020). Reflecting on rumination: Consequences, causes, mechanisms and treatment of rumination. Behaviour Research and Therapy, 127(1), 103573. https://doi.org/10.1016/j.brat.2020.103573
Wei, R., & Zimmermann, W. (2017). Microbial enzymes for the recycling of recalcitrant petroleum"based plastics: how far are we? Microbial Biotechnology, 10(6), 1308-1322. https://doi.org/10.1111/1751-7915.12710
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A Bacterium That Degrades and Assimilates poly(ethylene terephthalate). Science, 351(6278), 1196-1199. https://doi.org/10.1126/science.aad6359
Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. https://doi.org/10.1038/nature21001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gadhavi H. S, Bhavsar K. R, Raval A. A
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.