Design and Analysis of Multi-layer Resistive Ink Film Based Metamaterial Ultra-thin Broadband Absorber
DOI:
https://doi.org/10.47941/ijce.1879Keywords:
Metamaterial, Resistive Ink , Broadband.Abstract
Purpose: In order to achieve an excellent electromagnetic absorption response for radar applications, this work proposes a design of an ultra-thin, super broadband, high efficiency meta-material that is insensitive to incidence angle.
Methodology: a metamaterial based on multilayer resistive ink unit cell is selected, designed and optimized for minimum electromagnetic absorption and widest bandwidth. The equivalent circuit is derived and analyzed and compered using matlab to results from electromagnetic simulator CST.
Findings: Calculating approval requires impedance matching in the structure, which makes it challenging to absorb at high frequencies. In this instance, the proposed structure achieves more than 0.98 absorptivity between 4 and 400 GHz, resulting in a broad absorption bandwidth. When exposed to oblique incidences, the proposed structure behaves in the same way for both transverse electric (TE) and transverse magnetic (TM) modes up to 45°. The total thickness of the planned absorber is 2.105 mm, or 0.028 λ0 at the lowest working frequency. Additionally, find and compare previous radar band reports with the proposed absorber. It is reported to offer more practical feasibility and to be a viable choice for S, C, X, Ku, K, Ka, V, and W bands in addition to millimeter-band radar applications.
Unique contribution to theory, practice and policy: Increasing the band width compared to previous studies while increasing the absorption efficiency and reducing the thickness of the metamaterial.
Downloads
References
Cai, W., Chettiar, U. K., Kildishev, A. V., & Shalaev, V. M. (2007). Optical cloaking with metamaterials. Nature photonics, 1(4), 224-227.
Chen, J., Shang, Y., & Liao, C. (2018). Double-layer circuit analog absorbers based on resistor-loaded square-loop arrays. IEEE antennas and wireless propagation letters, 17(4), 591-595.
Chen, P., Kong, X., Han, J., Wang, W., Han, K., Ma, H., . . . Shen, X. (2021). Wide-angle ultra-broadband metamaterial absorber with polarization-insensitive characteristics. Chinese physics letters, 38(2), 027801.
Coskun, A., Ozmen, A., Ahmed, F., & Ertugrul, M. (2024). Achieving High Efficiency, Super Broadband, Ultra-Thin, and Advanced Electromagnetic Absorption for S, C, X, Ku, K, Ka, V, W, and Millimeter Band Radar Applications.
Farhat, M., Guenneau, S., Movchan, A., & Enoch, S. (2008). Achieving invisibility over a finite range of frequencies. Optics express, 16(8), 5656-5661.
Gabrielli, L. H., Cardenas, J., Poitras, C. B., & Lipson, M. (2009). Silicon nanostructure cloak operating at optical frequencies. Nature photonics, 3(8), 461-463.
Huang, C., Ji, C., Zhao, B., Peng, J., Yuan, L., & Luo, X. (2021). Multifunctional and tunable radar absorber based on graphene‐integrated active metasurface. Advanced Materials Technologies, 6(4), 2001050.
Kim, J., Han, K., & Hahn, J. W. (2017). Selective dual-band metamaterial perfect absorber for infrared stealth technology. Scientific Reports, 7(1), 1-9.
Landy, N. I., & Padilla, W. J. (2009). Guiding light with conformal transformations. Optics express, 17(17), 14872-14879.
Li, F.-f., Lou, Q., Chen, P., Poo, Y., & Wu, R.-X. (2018). Broadband backscattering reduction realized by array of lossy scatterers. Optics express, 26(26), 34711-34718.
Li, J., & Pendry, J. B. (2008). Hiding under the carpet: a new strategy for cloaking. Physical review letters, 101(20), 203901.
Li, M., Muneer, B., Yi, Z., & Zhu, Q. (2018). A broadband compatible multispectral metamaterial absorber for visible, near‐infrared, and microwave bands. Advanced Optical Materials, 6(9), 1701238.
Li, S.-J., Wu, P.-X., Xu, H.-X., Zhou, Y.-L., Cao, X.-Y., Han, J.-F., . . . Zhang, Z. (2018). Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects. Nanoscale research letters, 13, 1-13.
Lin, M., Yi, J., Chen, X., Jiang, Z. H., Zhu, L., Qi, P., & Burokur, S. N. (2021). Compact multi-functional frequency-selective absorber based on customizable impedance films. Optics express, 29(10), 14974-14984.
Ling, X., Xiao, Z., Zheng, X., Tang, J., & Xu, K. (2016). Ultra-broadband metamaterial absorber based on the structure of resistive films. Journal of electromagnetic waves and applications, 30(17), 2325-2333.
Pendry, J. B., Holden, A., Stewart, W., & Youngs, I. (1996). Extremely low frequency plasmons in metallic mesostructures. Physical review letters, 76(25), 4773.
Pendry, J. B., Schurig, D., & Smith, D. R. (2006). Controlling electromagnetic fields. Science, 312(5781), 1780-1782.
Schurig, D., Mock, J. J., Justice, B., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5801), 977-980.
Shelby, R. A., Smith, D., Nemat-Nasser, S., & Schultz, S. (2001). Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Applied Physics Letters, 78(4), 489-491.
Shi, M., Xu, C., Yang, Z., Liang, J., Wang, L., Tan, S., & Xu, G. (2018). Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating. Journal of Alloys and Compounds, 764, 314-322.
Sista, K. S., Dwarapudi, S., Kumar, D., Sinha, G. R., & Moon, A. P. (2021). Carbonyl iron powders as absorption material for microwave interference shielding: A review. Journal of Alloys and Compounds, 853, 157251.
Soheilifar, M. R., & Zarrabi, F. B. (2019). Reconfigurable metamaterial absorber as an optical switch based on organic-graphene control. Optical and Quantum Electronics, 51(5), 155.
Su, J., Li, W., Qu, M., Yu, H., Li, Z., Qi, K., & Yin, H. (2022). Ultrawideband RCS reduction metasurface based on hybrid mechanism of absorption and phase cancellation. IEEE Transactions on Antennas and Propagation, 70(10), 9415-9424.
Sun, J., Liu, L., Dong, G., & Zhou, J. (2011). An extremely broad band metamaterial absorber based on destructive interference. Optics express, 19(22), 21155-21162.
Sun, X., Li, Y., Huang, Y., Cheng, Y., Wang, S., & Yin, W. (2022). Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Advanced Functional Materials, 32(5), 2107508.
Tang, J., Xiao, Z., Xu, K., & Liu, D. (2016). A polarization insensitive and broadband metamaterial absorber based on three-dimensional structure. Optics Communications, 372, 64-70.
Tang, J., Xiao, Z., Xu, K., Ma, X., & Wang, Z. (2016). Polarization-controlled metamaterial absorber with extremely bandwidth and wide incidence angle. Plasmonics, 11, 1393-1399.
Tayde, Y., Saikia, M., Srivastava, K. V., & Ramakrishna, S. A. (2018). Polarization-insensitive broadband multilayered absorber using screen printed patterns of resistive ink. IEEE antennas and wireless propagation letters, 17(12), 2489-2493.
Valentine, J., Li, J., Zentgraf, T., Bartal, G., & Zhang, X. (2009). An optical cloak made of dielectrics. Nature materials, 8(7), 568-571.
Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of img align= absmiddle Alt= ϵ Eps/Img and μ. Physics-Uspekhi, 10(4), 509-514.
Wang, T., Ding, M.-D., He, H.-H., Mao, J.-B., & Ruan, J.-F. (2022). Ultra-wideband polarization-and angle-insensitive metamaterial absorber based on multilayer resistive ink. Journal of electromagnetic waves and applications, 36(2), 272-284.
Yang, J. G., Kim, N. J., Yeom, I. S., Keum, H. S., Yoo, Y. J., Kim, Y. J., & Lee, Y. (2017). Method of measuring the amounts of electromagnetic radiation absorbed and controlled by metamaterials in anechoic chamber. Measurement, 95, 328-338.
Yao, Z., Xiao, S., Li, Y., & Wang, B.-Z. (2020). On the design of wideband absorber based on multilayer and multiresonant FSS array. IEEE antennas and wireless propagation letters, 20(3), 284-288.
Zhou, L., & Shen, Z. (2020). Absorptive coding metasurface with ultrawideband backscattering reduction. IEEE antennas and wireless propagation letters, 19(7), 1201-1205.
Zhu, R., Wang, J., Jiang, J., Xu, C., Liu, C., Jia, Y., . . . Chu, Z. (2022). Machine-learning-empowered multispectral metafilm with reduced radar cross section, low infrared emissivity, and visible transparency. Photonics Research, 10(5), 1146-1156.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Osman M. Alsemaid, A. Awad Babiker, E. Sulieman Saad
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.