Sur Une Des Liaisons Des Equations D’euler Lagrange A Celles De Hamilton Par Le Théorème De L. Noether
DOI:
https://doi.org/10.47941/ijms.2294Keywords:
Métrique, Problèmes Variationnels, Fonction Lisse, Géodésie, Quasi PériodicitéAbstract
In this paper, we have traced some theories in physics which are described by the Lagrangian, by the associated Hamiltonian. Then, we made the connection between the Euler-Lagrange equations to those of Hamilton basing on a result we got : « the functions and are reciprocal diffeomorphisms », L represents the Lagrangian of a phenomen. On his the associated Hamiltonian and respectively the generalized coordinate of phenomenon and the conjugate momentum of the Lagrangian with respect to By proving that , which is a solution of the Euler-Lagrange equation, is also a solution of Hamilton equations therefore a first integral. We have joined Noether’s theorem which states that is a first integral where W is an infinitesimal symmetry of the Lagrangian.
Downloads
References
BOURBAKI, N., Les structures fondamentales de l'Analyse, (Hermann)
BERKOVICH, V.G., Spectral theory and analytic geometry over non-Archimedean fields. Mathematical Surveys and Monographs. Vol. 33. American Mathematical Society, Providence. RI. 1990
BOSCH S. GUNTZER, U. & SOULE, C., "Non-Archimedean Arakslov theory", J. Algebraic Geometry 4 (1995)
DEMAILLY, J-P., "Mesures de Monge Ampère et caractérisation géométrique des variétés algébriques affines». Mém. Soc. Math.France (1985), N°19, p.124
DEMAILLY, J-P.. "Monge-Ampère operators, Lelong numbers and intersection theory », in complex analysis and geometry, Univ. Ser. Phenum. New-York. 1993
DAUTRAY, R. et LIONS, J. L.. Analyse mathématique et calcul numérique pour les sciences et techniques, (Masson 1986)
KREEP. and SOIZEC., Mathematics of Random Phenomena. (Reidel Publishing Company 1986).
LIBERMAMNP., Géométrie Différentielle. Chapitre IX du volume II de l'algèbre d'histoire des mathématiques édité par J. Dieudonné. (Hermann 1978).
MAILLOT, « Géométrie d'Arakelov des variétés toriques et fibrés en droites intenables ». Mem. Soc. Math. France (2000)
PEDERSEN, G.K.. Analysis Now, (Springer Verlag 1990)
THUILIERA, ‘’ Théorie du potential sur les courbes en géométrie non archimédienne, applications à la théière d’arakelov », Thèse, Université de Rennes 1, 2005.
YUANX, « Big line bundles on arithmetic varieties », 2006, arXiv : math. NT/0612424.
KILBAS, A.A., SRIVASTAVI, H.M., TRUIJILLO, J.J. : Theory and applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006.
HILFER, R., Applications of fractional calculus in physics. World Sci. Publising, Redding, River Edge, NJ, 2000.
MAGIN, RL. : Fractionnal Calculus in Bioengineering. Begell House Publisers, Redding, CT, 2006.
HERMANN, R. : Fractionnal calculus, An introduction for physicists. World Scie. Publuising, Singapore, 2011.
METZLER, R., KLAFTER, J., The restaurant at the end of the randon walk : recent developments in the description of anomalous transport by fractional dynamcis, J. Phys. A37, R161-R208, 2004
JLAGESN, R., RADONS, G., SOKOLOV, IM, Anomalous transport : Foundations and applications. Wiley-VCH, Weinheim, 2007.
LASKIN, N. : Fractional Schrödinger equation, Phys. Rev. E(3)66, 056108, 7 pp, arXivquant-Ph/0410028, 2002.
NABERN, M : Time Fractional Schrödinger equation, J. Math. Phys. 45, 3339-3352, arXivquant-Ph/0410028, 2004
IOMIN, A. : Accelerator dynamics of fractionnal kicked rotor, Phys. Rev. E75, 037201, 4pp, arXivquant-Ph/0410028, 2007
TARASOV, V.E : Franctionnal Heisenberg equation, Phys. Lett. A372, 2984-2008.
KETOV, S.V., PRAGER, Ya.S : on the square root of the Dirac equation whitien extended supersymmetry, Acta phys. Polon, B21, 463-467, 1990
TARASOV, V.E : Franctionnal vector calculus and fractionnal Maxwell’s equations. Ann, Physics 323, 2756-2778, 2008.
MUSLIH, S.I, AGRAWAL, OP., BALEANU, D. : A fractionnal Dirac equation and its solutions, J. Phys. A43, 0552203, 13 pp, 2010.
LAZO, M.J., gaufe invariant fractionnal electromagnetics fields, Phys. Lett. A375 ; 3541-3546, 2011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tamba Of’rI’shii Gordien
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.