Mathematical Insights into Large Language Models

Authors

  • Dr. Ranjith Gopalan. PhD

DOI:

https://doi.org/10.47941/ijms.2006

Keywords:

LLMs, Encoder-Decoder Architecture, Gradient Descent, Loss Functions, Training Algorithms, Parallel Modeling, Linear Algebra, Vectors, Tensors, Discrete Probability Distribution, Continuous Probability Distribution, Learning Rate.

Abstract

Purpose: The paper presents an exhaustive examination of the mathematical frameworks that support the creation and operation of large language models. The document commences with an introduction to the core mathematical concepts that are foundational to large language models. It delves into the mathematical algorithms employed in training these models and scrutinizes how various mathematical notions influence their efficacy.

Methodology: Furthermore, it dissects the structure of large language models, analyzing the mathematical tenets that dictate their design and functionality. It also considers the mathematical logic underpinning these models' performance and the intricacies involved in their expansion. Additionally, it probes into the mathematical underpinnings of attention mechanisms within large language models, assessing how these mechanisms bolster the models' effectiveness and comprehensibility.

Findings: Subsequently, it examines the mathematical bases of attention mechanisms in large language models, considering how these mechanisms augment the models' efficiency and clarity. It also debates the mathematical methods for refining large language models and the hurdles faced in enhancing their interpretability. By understanding the mathematical foundations of LLMs, we can leverage insights from the algorithms and principles driving these models, thus enhancing their inventive output and broadening the horizons of design and artistic expression.

Unique contribution to theory, policy and practice: Lastly, it ventures into the ethical considerations surrounding large language models, scrutinizing the mathematical aspects related to these concerns.

Downloads

Download data is not yet available.

Author Biography

Dr. Ranjith Gopalan. PhD

Sr Architect

References

Yuchen Yang, Houqiang Li, Yanfeng Wang, Yu Wang. “Improving the Reliability of Large Language Models by Leveraging Uncertainty-Aware In-Context Learning” arXiv (Cornell University). Oct. 2023. https://doi.org/10.48550/arXiv.2310.04782.

TomB. Brown Jared Kaplan Benjamin Mann et al.. “Language Models are Few-Shot Learners”arXiv:2005.14165v4 [cs.CL] 22 Jul 2020

Qihao Zhu,Jianxi Luo. “Generative design ideation: A natural language generation approach”arXiv:2204.09658v1 [cs.CL] 28 Mar 2022

Lyle Regenwetter, Amin Heyrani Nobari, and Faez Ahmed. “Deep generative models in engineering design: A review”. Journal of Mechanical Design, 144(7):071704, 2022.

Kevin Dunnell2, Trudy Painter. “Latent Lab: Large Language Models for Knowledge Exploration”. arXiv:2311.13051v1 [cs.AI] 21 Nov 2023

Yibo Jiang∗1, Goutham Rajendran∗2, Pradeep Ravikumar et al.. “On the Origins of Linear Representations in Large Language Models”. arXiv:2403.03867v1 [cs.CL] 6 Mar 2024

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient descent. In Advances in neural information processing systems, pages 3981–3989, 2016.

T. C. Hollon et al.. "Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging". Nature Medicine. vol. 29. no. 4. pp. 828-832. Mar. 2023. 10.1038/s41591-023-02252-4.

Ioannou and E. Makridou. "Exploring the potentials of educational robotics in the development of computational thinking: A summary of current research and practical proposal for future work". Education and Information Technologies. vol. 23. no. 6. pp. 2531-2544. May. 2018. 10.1007/s10639-018-9729-z.

T. B. Brown et al.. "Language Models are Few-Shot Learners". arXiv (Cornell University). May. 2020. 10.48550/arxiv.2005.14165.

Q. Zhu and J. Luo. "Generative Pre-Trained Transformer for Design Concept Generation: An Exploration". arXiv (Cornell University). Nov. 2021. 10.48550/arxiv.2111.08489.

K. Dunnell, T. Painter, A. Stoddard and A. Lippman. "Latent Lab: Large Language Models for Knowledge Exploration". arXiv (Cornell University). Nov. 2023. 10.48550/arxiv.2311.13051.

J. He et al.. "WordArt Designer: User-Driven Artistic Typography Synthesis using Large Language Models". Jan. 2023. 10.18653/v1/2023.emnlp-industry.23.

L. Makatura et al.. "How Can Large Language Models Help Humans in Design and Manufacturing?". arXiv (Cornell University). Jul. 2023. 10.48550/arxiv.2307.14377.

C. Qian et al.. "Communicative Agents for Software Development". arXiv (Cornell University). Jul. 2023. 10.48550/arxiv.2307.07924.

E. Ferrara. "GenAI Against Humanity: Nefarious Applications of Generative Artificial Intelligence and Large Language Models". arXiv (Cornell University). Oct. 2023. 10.48550/arxiv.2310.00737.

Wang, Z. Yin, Y. Hu, Y. Mao and P. Hui. "Exploring the Potential of Large Language Models in Artistic Creation: Collaboration and Reflection on Creative Programming". arXiv (Cornell University). Feb. 2024. 10.48550/arxiv.2402.09750.

S. Suh, M. Chen, B. Min, T. J. Li and H. Xia. "Structured Generation and Exploration of Design Space with Large Language Models for Human-AI Co-Creation". arXiv (Cornell University). Oct. 2023. 10.48550/arxiv.2310.12953.

J. He et al.. "WordArt Designer API: User-Driven Artistic Typography Synthesis with Large Language Models on ModelScope". arXiv (Cornell University). Jan. 2024. 10.48550/arxiv.2401.01699.

S. Jalil, S. Rafi, T. D. LaToza, K. Moran and W. Lam. "ChatGPT and Software Testing Education: Promises & Perils". arXiv (Cornell University). Feb. 2023. 10.48550/arxiv.2302.03287.

X. Fang et al.. "Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and Understanding -- A Survey". arXiv (Cornell University). Feb. 2024. 10.48550/arxiv.2402.17944.

R. Cotterell, A. Svete, C. Meister, T. Li and D. Li. "Formal Aspects of Language Modeling". arXiv (Cornell University). Nov. 2023. 10.48550/arxiv.2311.04329.

J. Hoffmann et al.. "Training Compute-Optimal Large Language Models". arXiv (Cornell University). Mar. 2022. 10.48550/arxiv.2203.15556.

W. Liu et al.. "Mathematical Language Models: A Survey". arXiv (Cornell University). Dec. 2023. 10.48550/arxiv.2312.07622.

J. A. Goldstein, G. Sastry, M. Musser, R. DiResta, M. Gentzel and K. Šeďová. "Generative Language Models and Automated Influence Operations: Emerging Threats and Potential Mitigations". arXiv (Cornell University). Jan. 2023. 10.48550/arxiv.2301.04246.

N. Saunshi, S. Malladi and S. Arora. "A Mathematical Exploration of Why Language Models Help Solve Downstream Tasks". arXiv (Cornell University). May. 2021. 10.48550/arXiv.2010.03648.

J. Kaplan et al.. "Scaling Laws for Neural Language Models". Jan. 2020. 10.48550/arXiv.2001.08361.

W. X. Zhao et al.. "A Survey of Large Language Models". arXiv (Cornell University). Mar. 2023. 10.48550/arxiv.2303.18223.

M. R. Douglas. "Large Language Models". arXiv (Cornell University). Jul. 2023. 10.48550/arxiv.2307.05782.

D. R. King et al.. "An Introduction to Generative Artificial Intelligence in Mental Health Care: Considerations and Guidance". Current Psychiatry Reports. vol. 25. no. 12. pp. 839 -846. Nov. 2023. 10.1007/s11920-023-01477-x.

S. Marks and M. Tegmark. "The Geometry of Truth: Emergent Linear Structure in Large Language Model Representations of True/False Datasets". arXiv (Cornell University). Oct. 2023. 10.48550/arxiv.2310.06824.

S. Kadavath et al.. "Language Models (Mostly) Know What They Know". arXiv (Cornell University). Jul. 2022. 10.48550/arxiv.2207.05221.

T. Kalai and S. Vempala. "Calibrated Language Models Must Hallucinate". arXiv (Cornell University). Nov. 2023. 10.48550/arxiv.2311.14648.

Geshkovski, C. Letrouit, Y. Polyanskiy and P. Rigollet. "A mathematical perspective on Transformers". arXiv (Cornell University). Dec. 2023. 10.48550/arxiv.2312.10794.

R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer and Y. Wu. "Exploring the limits of language modeling". arXiv (Cornell University). Feb. 2016.

G. Xu and Y. Chen. "Generative AI for Synthetic Data Generation: Methods, Challenges and the Future". arXiv (Cornell University). Mar. 2024. 10.48550/arxiv.2403.04190.

G. Feng, Y. Gu, B. Zhang, H. Ye, D. He and L. Wang. "Towards Revealing the Mystery behind Chain of Thought: A Theoretical Perspective". arXiv (Cornell University). May. 2023. 10.48550/arxiv.2305.15408.

Y. Li, M. Du, R. Song, X. Wang and W. Ying. "A Survey on Fairness in Large Language Models". arXiv (Cornell University). Aug. 2023. 10.48550/arxiv.2308.10149.

S. Lu, I. Bigoulaeva, R. Sachdeva, H. T. Madabushi and I. Gurevych. "Are Emergent Abilities in Large Language Models just In-Context Learning?". arXiv (Cornell University). Sep. 2023. 10.48550/arxiv.2309.01809.

R. Navigli, S. Conia and B. Roß. "Biases in Large Language Models: Origins, Inventory, and Discussion". Journal of Data and Information Quality. vol. 15. no. 2. pp. 1 -21. Jun. 2023. 10.1145/3597307.

S. R. Bowman. "Eight Things to Know about Large Language Models". arXiv (Cornell University). Apr. 2023. 10.48550/arxiv.2304.00612.

E. M. Bender, T. Gebru, A. McMillan-Major and S. Shmitchell. "On the Dangers of Stochastic Parrots". Mar. 2021. 10.1145/3442188.3445922.

D. Hovy and S. Prabhumoye. "Five sources of bias in natural language processing". Language and Linguistics Compass. vol. 15. no. 8. Aug. 2021. 10.1111/lnc3.12432.

C. D. Singh, J. P. Inala, M. Galley, R. Caruana and J. Gao. "Rethinking Interpretability in the Era of Large Language Models". arXiv (Cornell University). Jan. 2024. 10.48550/arxiv.2402.01761.

R. Balestriero, R. Cosentino and S. Shekkizhar. "Characterizing Large Language Model Geometry Solves Toxicity Detection and Generation". arXiv (Cornell University). Dec. 2023. 10.48550/arxiv.2312.01648.

H. Zhao et al.. "Explainability for Large Language Models: A Survey". ACM Transactions on Intelligent Systems and Technology. vol. 15. no. 2. pp. 1-38. Feb. 2024. 10.1145/3639372.

M. G. Hanna, O. Liu and A. Variengien. "How does GPT-2 compute greater-than?: Interpreting mathematical abilities in a pre-trained language model". arXiv (Cornell University). Apr. 2023. 10.48550/arxiv.2305.00586.

Vaswani et al.. "Attention is All you Need". arXiv (Cornell University). vol. 30. pp. 5998 -6008. Jun. 2017.

R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer and Y. Wu. "Exploring the limits of language modeling". arXiv (Cornell University). Feb. 2016.

Y. Chang et al.. "A Survey on Evaluation of Large Language Models". arXiv (Cornell University). Jul. 2023. 10.48550/arxiv.2307.03109.

T. Mikolov, S. Kombrink, L. Burget, J. Černocký and S. Khudanpur. "Extensions of recurrent neural network language model". May. 2011. 10.1109/icassp.2011.5947611.

Ignat et al.. "A PhD Student's Perspective on Research in NLP in the Era of Very Large Language Models". arXiv (Cornell University). May. 2023. 10.48550/arxiv.2305.12544.

Downloads

Published

2024-06-16

How to Cite

Gopalan, R. (2024). Mathematical Insights into Large Language Models. International Journal of Modern Statistics, 4(1), 14–32. https://doi.org/10.47941/ijms.2006

Issue

Section

Articles