Potential of Jatropha Curcas Seeds oil for Polyester-amides Production

Authors

  • Olakunle Alex Akinsanoye Dominican University, Samonda, Nigeria
  • Abimbola Odunola Oginni University of Ibadan, Nigeria
  • Mopelola Abeke Omotoso University of Ibadan, Nigeria

DOI:

https://doi.org/10.47941/jps.2757

Keywords:

Polyester-Amide, Biomaterial, Phenol, Cresol, Polymerization, Jatropha Curcas.

Abstract

Purpose: Jatropha curcas potential as feedstock for   polyester-amides production was studied. Polyesteramides are valuable biomaterials   in the   activities of   petroleum industries where they are utilized as oil field chemicals.

Methodology: Jatropha  curcas  fruits  were  collected  in Ibadan and its  environment.  Seed oil of this fruit was extracted using n-hexane and concentrated. The phenol Jatropha curcas biopolymer (PJCB) and cresol Jatropha curcas biopolymer (CJCB)   were prepared by polymerizing the oil with phenol and cresol via cationic polymerization method. Polyacrylamide (PAA) was prepared through free radical polymerization technique.  Polyester-amides were prepared by   polymerizing PJCB, CJCB and polyacrylamide (PAA). They were  characterized  using FTIR for  functional groups  modifications,  1H-NMR for  changes  in the  chemical environments    and  Viscometry  techniques for  mean molecular  weight  determination.  

 Findings: The   oil yield is 55.60%.  Iodine value (gI2/100g)   is 105.33±1.78, 97.32±0.01, 101.33±0.66   for oil,    PJCB and CJCB respectively.  FTIR band shifts at 1649.48cm-1 and 1600.35cm-1 confirm C=C stretch of aromatics in PJCB and CJCB.  PAA formation was confirmed with C=O stretch at 1680.00cm-1.  Peaks at 3234.28cm-1 and 3097.14cm-1 assigned    to   N-H stretching vibration of amides confirmed polyester-amide. The 1H-NMR spectra showed peaks at δppm, 7.25 and   7.06   indicating aromatics for the PJCB &CJCB. δppm at 7.18 confirms  amide  protons  in PAA.   δppm  6.86 and  8.69  confirm amide  formation while  peaks  at  δ2.36ppm and  δ3.11ppm were  evidences  for  ester  formation. These peaks   confirm the new materials   as polyester-amides.  The mean molecular weight (g/mol) for    PJCB, PJCB-PAA, CJCB and CJCB-PAA    are 1.041x109, 1.39187x1012 9.929x109 and 1.07919 x 1012 respectively.

Unique Contribution to Theory, Practice and Policy: Jatropha curcas oil is viable in formulating polyester-amides for industrial usages.  

Downloads

Download data is not yet available.

Author Biographies

Olakunle Alex Akinsanoye, Dominican University, Samonda, Nigeria

Department of Chemical Sciences

Abimbola Odunola Oginni, University of Ibadan, Nigeria

Department of Chemistry

Mopelola Abeke Omotoso , University of Ibadan, Nigeria

Department of Chemistry

References

Abdelgadir H A and Van-Staden J. 2013. Ethnobotany, Ethnopharmacology and Toxicity of Jatropha Curcas L. (Euphorbiaceae): A Review. South Afr. J. Bot. 88, 204–218. doi:10.1016/j.sajb.2013.07.021.

Abdullah, M A, Rahmah, A. U and Man Z. 2010. Physicochemical and Sorption Characteristics of Malaysian Ceiba Pentandra (L.) Gaertn. As a Natural Oil Sorbent. J. Hazard. Mater. 177: 683–691. doi:10.1016/ j.jhazmat.2009.12.085.

Abed K A, Gad M S, El Morsi A. K, Sayed, M M and Elyazeed, S A. 2019. Effect of Biodiesel Fuels on Diesel Engine Emissions. Egypt. J. Pet. 28, 183–188. doi:10.1016/j.ejpe.2019.03.001.

Aranguren M I, González J, González F and M.A Mosiewick M.A. 2012. Biodegradation of a vegetable oil based polyurethane and wood flour composites. Polymer Test; 31(1):7–15. DOI: 10.1016/j.polymertesting.2011.09.001

Chen S, Wang Q, Wang T and Pei X. 2011. Preparation, damping and thermal properties of potassium titanate whiskers filled castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater Des; 32: 803–7. DOI: 10.4236/msce.2023.1111003.

Dardir M M and Hafiz A A. 2013. Ester-amide as an environmentally friendly synthetic based drilling fluids. Journal of American Science. 9. 133-142. http://www.jofamericanscience.org.

Desroches M, Escouvois M, Auvergne R, Caillol S and Boutevin, B. 2012 . From vegetable oils to polyurethanes: Synthetic routes to polyols and main industrial products. Polym. Rev.52: 38–79. https://doi.org/10.1080/15583724.2011.640443.

De-wit M A, Wang Z.X, Atkins K M, and Mequanint, E. R. 2008. Synthesis, characterization and functionalization of polyesterides with pendant amine functional groups. Journals of polymer science, Part A. Polymer chemistry. 47:6376-6392. DOI: 10.1002/pola.22915.

Duduyemi O A and Oluoti K. 2013. Extraction and determination of physico-chemical properties of water-melon seed oil (citrullus lanatus L.) for relevant uses. International Journal of scientific and technology research, 2: 66-68. {https://api.semanticscholar.org/CorpusID:11439259}.

Gupta A.P and Ahmad S. 2011. Modification of novel bio-based resin-epoxidized soybean oil by conventional epoxy resin. Polymer Engineering and Science 51:1087–1091. DOI: 10.1002/pen.21791

Ionescu M, Wan X, Biliç N, and Petrovic, Z. S. 2011. Polyols and rigid polyurethane foams from cashew nut shell liquid. J. Pol. Environ. 20:647–658. DOI: 10.1007/s10924-012-0467-9

Law V and Dowling D. 2023. Green Chemistry Algometry Test of Microwave-Assisted Synthesis of Transition Metal Nanostructures. American Journal of Analytical Chemistry, 14: 493-518. doi: 10.4236/ajac.2023.1411029.

Li Y X, Liu R G, Liu W Y, Kang H L, Wu M and Huang Y. 2008. Synthesis, self-assembly, and thermosensitive properties of ethyl cellulose-g-p(PEGMA) amphiphilic copolymers. J Polym Sci Part A: Polym Chem 46:6907–6915. DOI: 10.1002/pola.23000

Meng T, Gao X, Zhang J, Yuan J and Zhang, Y J .2009. Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer 50:447–454. DOI: 10.1016/j.polymer.2008.11.011

Nikesh B S and Prakash A M. 2015. Modified vegetable oil based additives as a future polymeric Material-Review. Open journal of Organic polymeric material. 10: 1-22. DOI: 10.4236/ojopm.2015.51001

Omotoso M A and Akinsanoye O A. 2015. A review of biodiesel generation from non-edible seed oils crop using non-conventional heterogeneous catalysts. Journal of Petroleum Technology and Alternative Fuels. 6: 1-12. https://doi.org/10.5897/JPTAF2014.0108

Omotoso M.A and Akinsanoye O.A . 2017. Grafting vegetable oils to develop environmental friendly Industrial Chemicals. Ponte Journal. 73:237-258. doi: 10.21506/j.ponte.2017.7.49

Pan X and Webster D. C. 2012. New bio-based high functionality polyols and their use in polyurethane coatings. Sus.Chem. 5:419–429. DOI: 10.1002/cssc.201100415

Priya B., Singha A. S and Pathania D. 2014. Synthesis and kinetics of ascorbic acid initiated graft copolymerized delignified cellulosic fiber. Polymer Engineering and Sci. 55: 474-484. https://doi.org/10.1002/pen.23918

Xia Y and Larock R. C. 2010. Vegetable Oil-Based Polymeric Materials: Synthesis, Properties, and Applications. Green Chemistry, 12: 1893-1909. http://dx.doi.org/10.1039/c0gc00264j.

Yang F, Li G, He, G Ren F and Wang J . X .2009. Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym. 78: 95–99. DOI: 10.1016/j.carbpol.2009.04.004

Zahir E, Saeed R, Abdul-Hameed M, and Yousuf A .2014. Study of physiochemical properties of edible oil and evaluation of frying oil quality by Fourier Transformation-Infrared(FT-IR) Spectroscopy. Arabian Journal of Chemistry. 10:15-22. DOI:10.1016/J.ARABJC.2014.05.025.

Downloads

Published

2025-05-26

How to Cite

Akinsanoye, O. A., Oginni, A. O., & Omotoso , M. . A. (2025). Potential of Jatropha Curcas Seeds oil for Polyester-amides Production. Journal of Physical Sciences, 7(1), 24–48. https://doi.org/10.47941/jps.2757

Issue

Section

Articles