A Structured Analytical Review of Cyber-Physical Systems and Edge Computing Architectures for Soil Health Monitoring in Uganda: A Case Study of the Eastern Region Agricultural Sector

Authors

  • Opolot Francis Busitema University
  • Dr. Alunyu Andrew Lira University; Busitema University
  • Dr. Lukyamuzi Andrew Busitema Nagongera Campus; Busitema University
  • Dr. Angole Richard Okello Busitema Nagongera Campus; Busitema University

DOI:

https://doi.org/10.47941/ijce.3479

Keywords:

Cyber-Physical Systems, Edge Computing, Soil Monitoring, IoT Security, Cross-Layer Security, Anomaly Detection, Uganda

Abstract

Purpose: This paper aims to analyze existing Cyber-Physical Systems (CPS) architectures for soil health monitoring and the integration of edge computing, with a focus on identifying security gaps that hinder reliable and trustworthy real-time agricultural intelligence in Uganda’s Eastern Region.

Methodology: A structured systematic literature review was conducted on peer-reviewed publications published between 2020 and 2025. The review examined global and sub-Saharan African CPS-based soil health monitoring architectures, with particular attention to edge computing integration, security mechanisms, and architectural design patterns. Architectural, technological, and security dimensions were synthesized to identify recurring vulnerabilities and gaps relevant to Uganda’s agricultural context.

Findings: The review reveals significant architectural fragmentation, inconsistent security implementations, and limited cross-layer protection across sensing, communication, edge, and application layers. Existing deployments remain vulnerable to sensor spoofing, physical tampering, insecure edge gateways, malware propagation, and compromised data transmission. While promising advancements exist such as ML-driven anomaly detection, federated learning, cryptographic safeguards, and IT/OT convergence these solutions are often applied in isolation rather than within holistic CPS-edge security frameworks.

Unique Contribution to Theory, Policy, and Practice: The study advances CPS and edge computing research by synthesizing fragmented architectural and security perspectives into a unified cross-layer analytical view. It provides evidence to support the development of secure smart agriculture and digital transformation policies in Uganda and similar contexts. The study outlines a conceptual direction for designing an integrated, secure CPS–edge architecture tailored to real-time soil health monitoring, supporting more resilient, trustworthy, and scalable agricultural decision-making systems.

Downloads

Download data is not yet available.

Author Biographies

Opolot Francis, Busitema University

PhD candidate, Department of computer engineering & informatics

Dr. Alunyu Andrew, Lira University; Busitema University

Senior lecturer, Department of computer engineering and informatics

Dr. Lukyamuzi Andrew, Busitema Nagongera Campus; Busitema University

Senior lecturer, Faculty of science education

Department of information technology, Busitema University

Dr. Angole Richard Okello, Busitema Nagongera Campus; Busitema University

Senior lecturer, Department of information technology

References

Abdi, A. H., Mohamed, A. A., & Sheikh, S. N. (2025). Navigating Paths to Food Security in East Africa: Strengthening Rural Development Amid Climate Shocks, Political Instability, and Rising Food Prices. Frontiers in Political Science, 7, 1636407.

Abdulkarim, O. M., Adebayo, O. S., Aliyu, H. O., & Olalere, M. (2023). Cloud Data Security Audit Report Techniques Using Bat Inspired Algorithm (CDSART-BA): A Review.

Abiodun, O. I., Abiodun, E. O., Alawida, M., Alkhawaldeh, R. S., & Arshad, H. (2021). A review on the security of the internet of things: Challenges and solutions. Wireless Personal Communications, 119(3), 2603–2637.

Adewusi, A. O., Chiekezie, N. R., & Eyo-Udo, N. L. (2022). Securing smart agriculture: Cybersecurity challenges and solutions in IoT-driven farms. World Journal of Advanced Research and Reviews, 15(03), 480–489.

Adhikary, D., Plusquellic, J., & Tsiropoulou, E. E. (2025). Jamming Attacks Detection and Ejection in Over the Air Computation Concentrated Solar Power Systems. IEEE Internet of Things Journal.

Akter, T., Mahmud, T., Chakma, R., Datta, N., Hossain, M. S., & Andersson, K. (2024). Iot-based precision agriculture monitoring system: Enhancing agricultural efficiency. 2024 Second International Conference on Inventive Computing and Informatics (ICICI), 749–754.

Alaeiyan, M., Dehghantanha, A., Dargahi, T., Conti, M., & Parsa, S. (2020). A multilabel fuzzy relevance clustering system for malware attack attribution in the edge layer of cyber-physical networks. ACM Transactions on Cyber-Physical Systems, 4(3), 1–22.

Aldhyani, T. H. H., & Alkahtani, H. (2023). Cyber security for detecting distributed denial of service attacks in agriculture 4.0: Deep learning model. Mathematics, 11(1), 233.

Al-Dulaimi, R. T. A., & Türkben, A. K. (n.d.). A Novel Hybrid Complex Multilayer Perceptron for Enhancing DDoS Attack Detection in Network Security.

Ali, G., Mijwil, M. M., Buruga, B. A., Abotaleb, M., & Adamopoulos, I. (2024). A survey on artificial intelligence in cybersecurity for smart agriculture: state-of-the-art, cyber threats, artificial intelligence applications, and ethical concerns. Mesopotamian Journal of Computer Science, 2024, 53–103.

Ali, N., Manjula, V. S., & Marega, F. (2023). Impact of Digitization of Sustainable Agriculture in Uganda: A Case Study.

Almohri, H. M. J., Watson, L. T., & Evans, D. (2020). An attack-resilient architecture for the Internet of Things. IEEE Transactions on Information Forensics and Security, 15, 3940–3954.

Alwaheidi, M. K. S., & Islam, S. (2022). Data-driven threat analysis for ensuring security in cloud enabled systems. Sensors, 22(15), 5726.

Alyahya, S., Khan, W. U., Ahmed, S., Marwat, S. N. K., & Habib, S. (2022). Cyber Secure Framework for Smart Agriculture: Robust and Tamper-Resistant Authentication Scheme for IoT Devices. Electronics (Switzerland), 11(6). doi: 10.3390/electronics11060963

Alyas, T., Abbas, S., Abbas, Q., Albouq, S., Niazi, M., & Khan, M. A. (2025). A Privacy-Preserving and Adversarially Robust Hybrid Deep-Quantum Model for CPS Security. International Conference on Neural Computing for Advanced Applications, 161–175.

Anosike, P. L., & Silas, U. (2024). A Roadmap for Intelligent Agriculture in Africa-A Case Study of Sub-Saharan Africa. Ieomsociety. Org.

Arinze, E. D., & Agwu, C. O. (2024). Introduction to the Transformative Potential of the Internet of Things (IoT) in East Africa.

Ataguba, H. E., Kokofi, C., Alade, O. O., & Babatunde, E. D. (2024). Integrating cybersecurity and ICT into climate-smart agriculture: a framework for resilient food systems. Information Technologist, 21(2).

Babar, M., Jan, M. A., He, X., Tariq, M. U., Mastorakis, S., & Alturki, R. (2022). An optimized IoT-enabled big data analytics architecture for edge–cloud computing. IEEE Internet of Things Journal, 10(5), 3995–4005.

Balasubramanian, P. N., & Shashank, M. A. Q. S. (2025). Securing Low-Power Edge AI: A Vulnerability Analysis and Cybersecurity Framework for Resource-Constrained Devices.

Bhat, S. A., Huang, N.-F., Sofi, I. B., & Sultan, M. (2021). Agriculture-food supply chain management based on blockchain and IoT: A narrative on enterprise blockchain interoperability. Agriculture, 12(1), 40.

Chathoth, A. K., & Lee, S. (2025). PCAP-Backdoor: Backdoor Poisoning Generator for Network Traffic in CPS/IoT Environments. ArXiv Preprint ArXiv:2501.15563.

Chen, L., Tang, S., Balasubramanian, V., Xia, J., Zhou, F., & Fan, L. (2022). Physical-layer security based mobile edge computing for emerging cyber physical systems. Computer Communications, 194, 180–188.

Chirkhare, G., Hablani, R., & Balamwar, S. (2022). Prediction of regional vegetation cover using spatial image features and semantic segmentation. International Journal of Health Sciences, 6(S4), 5425–5435.

Chizema, T. R., Dlamini, P., Van Greunen, D., & Msomi, S. (2024). The Perceived Influence of Internet of Things on Precision Agriculture for Small-Scale Farming. 2024 IST-Africa Conference (IST-Africa), 1–10.

Dehury, M. K., Mohanta, B. K., & Chedup, S. (2024). Security issues and challenges in deploying a CPS using WSN. Information Technology Security: Modern Trends and Challenges, 25–46.

Dinn, C., Shakshuki, E., & Hassan, E. (2025). A Review of AIoT in Sustainable Agriculture: Advancing Soil Management with IoT Sensors. Procedia Computer Science, 265, 366–373.

El-Basioni, B. M. M., & Abd El-Kader, S. M. (2020). Laying the foundations for an IoT reference architecture for agricultural application domain. IEEE Access, 8, 190194–190230.

Ghimire, B., & Rawat, D. B. (2022). Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things. IEEE Internet of Things Journal, 9(11), 8229–8249.

Gupta, M., (Rav), M. G., & Yadav, A. K. (2023). Future Connected Technologies.

Han, K., Duan, Y., Jin, R., Ma, Z., Rong, H., & Cai, X. (2020). Open framework of gateway monitoring system for internet of things in edge computing. 2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC), 1–5.

Hashemi, S., & Zarei, M. (2021). Internet of Things backdoors: Resource management issues, security challenges, and detection methods. Transactions on Emerging Telecommunications Technologies, 32(2), e4142.

Humayed, A., Lin, J., Li, F., & Luo, B. (2017). Cyber-physical systems security—A survey. IEEE Internet of Things Journal, 4(6), 1802–1831.

Humayun, M., Jhanjhi, N. Z., Alsayat, A., & Ponnusamy, V. (2021). Internet of things and ransomware: Evolution, mitigation and prevention. Egyptian Informatics Journal, 22(1), 105–117.

Husnain, M., Hayat, K., Cambiaso, E., Fayyaz, U. U., Mongelli, M., Akram, H., Ghazanfar Abbas, S., & Shah, G. A. (2022). Preventing MQTT vulnerabilities using IoT-enabled intrusion detection system. Sensors, 22(2), 567.

Hussain, A., Abughanam, N., Qadir, J., & Mohamed, A. (2022). Jamming detection in iot wireless networks: An edge-ai based approach. Proceedings of the 12th International Conference on the Internet of Things, 57–64.

Islam, M. R., Oliullah, K., Kabir, M. M., Alom, M., & Mridha, M. F. (2023). Machine learning enabled IoT system for soil nutrients monitoring and crop recommendation. Journal of Agriculture and Food Research, 14, 100880.

Islam, S. N., Baig, Z., & Zeadally, S. (2019). Physical layer security for the smart grid: Vulnerabilities, threats, and countermeasures. IEEE Transactions on Industrial Informatics, 15(12), 6522–6530.

Kagona, E. (2025). A Mixed-Methods Analysis of Policy, Legal, and Technical Barriers to the Adoption of AI and IoT-Driven Agricultural Solutions in the East African Community (EAC). 2025 IEEE/ACM Symposium on Software Engineering in the Global South (SEiGS), 7–14.

Kansiime, M. K., Mugambi, I., Rware, H., Alokit, C., Aliamo, C., Zhang, F., Latzko, J., Puyun, Y., Karanja, D., & Dannie, R. (2022). Challenges and capacity gaps in smallholder access to digital extension and advisory services in Kenya and Uganda.

Kariri, E. (2022). IoT powered agricultural cyber-physical system: Security issue assessment. IETE Journal of Research, 1–11.

Kasarapu, S., Shukla, S., & Dinakarrao, S. M. P. (2024). Optimizing Malware Detection in IoT Networks: Leveraging Resource-Aware Distributed Computing for Enhanced Security. ArXiv Preprint ArXiv:2404.10012.

Khan, S. Z., Mohsin, M., & Iqbal, W. (2021). On GPS spoofing of aerial platforms: a review of threats, challenges, methodologies, and future research directions. PeerJ Computer Science, 7, e507.

Kim, C., Chang, S.-Y., Lee, D., Kim, J., Park, K., & Kim, J. (2023). Reliable detection of location spoofing and variation attacks. IEEE Access, 11, 10813–10825.

Kim, J., & Lee, J. Y. (2021). Server-Edge dualized closed-loop data analytics system for cyber-physical system application. Robotics and Computer-Integrated Manufacturing, 67, 102040.

Kondu, S. C. V., Ravikumar, G., & Mohan, S. N. (2025). CPS-DERMS: Cyber-Physical Security and Impact Analysis of DERMS Against MITM Attacks. 2025 IEEE Green Technologies Conference (GreenTech), 1–5.

Kishor Syam, S. K., & VA, B. (2024). An IoT-enabled real-time crop prediction system using soil fertility analysis. Eng, 5(4), 2496–2510.

Kumar, C., Marston, S., & Sen, R. (2020). Cyber-physical systems (CPS) security: state of the art and research opportunities for information systems academics. Communications of the Association for Information Systems, 47(1), 36.

Laaroussi, Z., & Novo, O. (2021). A performance analysis of the security communication in CoAP and MQTT. 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC), 1–6.

Latif, G., Alghazo, J., Maheswar, R., Vijayakumar, V., & Butt, M. (2020). Deep learning-based intelligence cognitive vision drone for automatic plant diseases identification and spraying. Journal of Intelligent & Fuzzy Systems, 39(6), 8103–8114.

Levshun, D., Chechulin, A., & Kotenko, I. (2021). Design of secure microcontroller-based systems: application to mobile robots for perimeter monitoring. Sensors, 21(24), 8451.

Liu, J., Du, Y., Yang, K., Wu, J., Wang, Y., Hu, X., Wang, Z., Liu, Y., Sun, P., & Boukerche, A. (2025). Edge-cloud collaborative computing on distributed intelligence and model optimization: A survey. ArXiv Preprint ArXiv:2505.01821.

Liu, R., Zhang, Y., Ge, Y., Hu, W., & Sha, B. (2020). Precision regulation model of water and fertilizer for alfalfa based on agriculture cyber-physical system. IEEE Access, 8, 38501–38516.

Liu, X., Wu, Y., Yu, Q., Song, S., Liu, Y., Zhou, Q., & Zhuge, J. (2022). PG-VulNet: detect supply chain vulnerabilities in IoT devices using pseudo-code and graphs. Proceedings of the 16th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, 205–215.

Makondo, N., Kobo, H. I., Mathonsi, T. E., & Du Plessis, D. P. (2024). Implementing an efficient architecture for latency optimisation in smart farming. IEEE Access, 12, 140502–140526.

Malik, A. W., Rahman, A. U., Qayyum, T., & Ravana, S. D. (2020). Leveraging fog computing for sustainable smart farming using distributed simulation. IEEE Internet of Things Journal, 7(4), 3300–3309.

Malik, K. M., Javed, A., Malik, H., & Irtaza, A. (2020). A light-weight replay detection framework for voice controlled IoT devices. IEEE Journal of Selected Topics in Signal Processing, 14(5), 982–996.

Manoj, T., Makkithaya, K., & Narendra, V. G. (2023). A trusted IoT data sharing and secure oracle-based access for agricultural production risk management. Computers and Electronics in Agriculture, 204, 107544.

Mishra, A., & Ray, A. K. (2022). A novel layered architecture and modular design framework for next-gen cyber physical system. 2022 International Conference on Computer Communication and Informatics (ICCCI), 1–8.

Othaman, N. N. C., Isa, M. N. M., Hussin, R., Zakaria, S., & Isa, M. M. (2021). IoT based soil nutrient sensing system for agriculture application. Int. J. Nanoelectron. Mater, 14, 279–288.

Panoff, M., Dutta, R. G., Hu, Y., Yang, K., & Jin, Y. (2021). On sensor security in the era of IoT and CPS. SN Computer Science, 2(1), 51.

Paris, I. L. B. M., Habaebi, M. H., & Zyoud, A. M. (2023). Implementation of SSL/TLS security with MQTT protocol in IoT environment. Wireless Personal Communications, 132(1), 163–182.

Parween, S., Hussain, S. Z., Hussain, M. A., & Pradesh, A. (2021). A survey on issues and possible solutions of cross-layer design in Internet of Things. Int. J. Comput. Networks Appl, 8(4), 311.

Pengpeng, Y., Teng, F., Zhu, W., Shen, C., Chen, Z., & Song, J. (2025). Cloud–edge–device collaborative computing in smart agriculture: architectures, applications, and future perspectives. Frontiers in Plant Science, 16, 1668545.

Pierce, F. J., & Elliott, T. V. (2008). Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and Electronics in Agriculture, 61(1), 32–43.

Piikki, K., Söderström, M., Eriksson, J., Muturi John, J., Ireri Muthee, P., Wetterlind, J., & Lund, E. (2016). Performance evaluation of proximal sensors for soil assessment in smallholder farms in Embu County, Kenya. Sensors, 16(11), 1950.

Quan, M. K., Pathirana, P. N., Wijayasundara, M., Setunge, S., Nguyen, D. C., Brinton, C. G., Love, D. J., & Poor, H. V. (2025). Federated learning for cyber physical systems: a comprehensive survey. IEEE Communications Surveys & Tutorials.

Romaniuk, S. N., & Omona, D. A. (2021). Uganda’s Cyber Security Capacities and Challenges. Companion to Global Cyber-Security Strategy, 573–632.

Sadik, M. , et al. (2021). (n.d.). • Energy-efficient and secure communication for smart agriculture: Challenges and solutions. Sensors.

Sathya, D., Thangamani, R., & Balaji, B. S. (2024). The revolution of edge computing in smart farming. In Intelligent Robots and Drones for Precision Agriculture (pp. 351–389). Springer.

Srivastava, P., Shukla, A., & Bansal, A. (2021). A comprehensive review on soil classification using deep learning and computer vision techniques. Multimedia Tools and Applications, 80(10), 14887–14914.

Tirumala Rao, Mr. P., Balaka Anil, Siddhartha, G., Shyam, Y., & Pawan Rao, B. (2024). SMART FARMING DECISION SUPPORT SYSTEM FOR PRECISION AGRICULTURE. Journal of Nonlinear Analysis and Optimization, 15(01), 1751–1758. doi: 10.36893/jnao.2024.v15101.1751-1758

Ul Haq, S., Singh, Y., Sharma, A., Gupta, R., & Gupta, D. (2023). A survey on IoT & embedded device firmware security: architecture, extraction techniques, and vulnerability analysis frameworks. Discover Internet of Things, 3(1), 17.

Wang, X., Wu, Q., Zeng, H., Yang, X., Cui, H., Yi, X., Piran, M. J., Luo, M., & Que, Y. (2025). Blockchain‐Empowered H‐CPS Architecture for Smart Agriculture. Advanced Science, 2503102.

Wang, Y., & Yang, Y. (2024). A novel secure and energy-efficient routing method for the agricultural internet of things using whale optimization algorithm. Journal of Cyber Security and Mobility, 13(4), 725–749.

Xu, J., Wei, L., Wu, W., Wang, A., Zhang, Y., & Zhou, F. (2020). Privacy-preserving data integrity verification by using lightweight streaming authenticated data structures for healthcare cyber–physical system. Future Generation Computer Systems, 108, 1287–1296.

Yazdinejad, A., Zolfaghari, B., Azmoodeh, A., Dehghantanha, A., Karimipour, H., Fraser, E., Green, A. G., Russell, C., & Duncan, E. (2021a). A review on security of smart farming and precision agriculture: Security aspects, attacks, threats and countermeasures. Applied Sciences, 11(16), 7518.

Zhukabayeva, T., Zholshiyeva, L., Karabayev, N., Khan, S., & Alnazzawi, N. (2025). Cybersecurity solutions for industrial internet of things–edge computing integration: Challenges, threats, and future directions. Sensors, 25(1), 213.

Downloads

Published

2026-02-03

How to Cite

Francis, F., Alunyu, A., Lukyamuzi, A., & Okello, A. R. (2026). A Structured Analytical Review of Cyber-Physical Systems and Edge Computing Architectures for Soil Health Monitoring in Uganda: A Case Study of the Eastern Region Agricultural Sector. International Journal of Computing and Engineering, 8(1), 78–92. https://doi.org/10.47941/ijce.3479

Issue

Section

Articles