Towards Entomoremediation: Plastic Consumption Rates and FTIR-ATR Analysis of Plastic, Frass and Exuviae from Tenebrio Molitor Fed with EPS and Maize

Authors

  • Gabriel Salazar-Robles Universidad Politécnica Metropolitana de Puebla, Mexico; Universidad Interamericana A.C., México
  • José María Cunill-Flores University of Miami, USA
  • Arianna Bravo-Nieves Universidad Politécnica Metropolitana de Puebla, Mexico
  • Guadalupe Velázquez-Vázquez Universidad Tecnológica de Tehuacán, México; Benemérita Universidad Autónoma de Puebla, México
  • Carmen Stefany López-Valencia Universidad Politécnica Metropolitana de Puebla, Mexico
  • Luisa María González-Castillo Universidad Politécnica Metropolitana de Puebla, Mexico
  • Diana del Rocio Olmos-Barrera Universidad Politécnica Metropolitana de Puebla, Mexico

DOI:

https://doi.org/10.47941/je.3397

Keywords:

Entomoremedition, Expanded Polystyrene, FTIR-ATR, Tenebrio Molitor

Abstract

Purpose: This study aimed to (1) evaluate the behavior of Tenebrio molitor larvae when consuming EPS in the presence of maize grains to identify consumption patterns, and (2) assess the possibility of using FTIR-ATR analysis of untreated samples of plastic, frass and exuviae to determine discernable changes after the bingeing phase of EPS consumption versus the control group.

Methodology: T. molitor larvae were obtained from Tuxtla Gutierrez Chiapas, México and the maize grains from Tlaxcala, México. The EPS consumption assays were done once a week and were expressed as the remaining percentage of EPS. FTIR-ATR analysis was performed on samples of plastic, frass and exuvia obtained from the EPS-maize treatments.

Findings: Three distinct phases were identified in EPS consumption: an initial lag phase, a significant bingeing phase, and a stabilization phase with declining consumption. Maize addition triggered a new bingeing phase. FTIR-ATR revealed consistent spectral differences between control and EPS-exposed samples in plastic and frass, indicating that T.molitor larvae induce chemical modifications in EPS. EPS-derived compounds were detected in frass but not in exuviae, suggesting excretion of degradation byproducts but not accumulation in the cuticle.

Unique Contribution to Theory, Policy and Practice: Direct FTIR-ATR measurements of untreated samples were sufficiently sensitive to distinguish differences among them, highlighting its utility as a rapid, non-destructive tool for preliminary biodegradation assessment. These results aim to improve entomoremediation strategies and enable more efficient evaluation of larval-mediated plastic degradation.

Downloads

Download data is not yet available.

Author Biographies

Gabriel Salazar-Robles, Universidad Politécnica Metropolitana de Puebla, Mexico; Universidad Interamericana A.C., México

Academia de Biotecnología

Coordinación de Salud

José María Cunill-Flores, University of Miami, USA

Rosenstiel School of Marine Atmospheric and Earth Sciences

Arianna Bravo-Nieves, Universidad Politécnica Metropolitana de Puebla, Mexico

Academia de Biotecnología

Guadalupe Velázquez-Vázquez, Universidad Tecnológica de Tehuacán, México; Benemérita Universidad Autónoma de Puebla, México

División Agroindustrial Alimentaria

Centro de Agroecología, Instituto de Ciencias

Carmen Stefany López-Valencia, Universidad Politécnica Metropolitana de Puebla, Mexico

Academia de Biotecnología

Luisa María González-Castillo, Universidad Politécnica Metropolitana de Puebla, Mexico

Academia de Biotecnología

Diana del Rocio Olmos-Barrera, Universidad Politécnica Metropolitana de Puebla, Mexico

Academia de Biotecnología

References

Alamri, M., Qasem, A., Mohamed, A., Hussain, S., Ibraheem, M., Shamlan, G., Alqah, H. & Qasha, A. (2021). Food packaging’s materials: A food safety perspective. Saudi Journal of Biological Sciences. 28, 4490 - 4499. https://doi.org/10.1016/j.sjbs.2021.04.047.

Al-Kadhemy, M. F. H., Rasheed, Z. S. & Salim, S. R. (2016). Fourier transform infrared spectroscopy for irradiation coumarin doped polystyrene polymer films by alpha ray. Journal of Radiation Research and Applied Sciences. 9(3), 321-331. https://doi.org/10.1016/j.jrras.2016.02.004.

Bec, K. B., Grabska, J., Czarnecki, M. A., Huck, C. W., Wojcik, M. J., Nakajima, T. & Ozaki, Y. (2019). IR spectra of crystalline nucleobases: Combination of periodic harmonic calculations with anharmonic corrections based on finite models. The Journal of Physical Chemistry B. 123(47), 10001-10013. https://doi.org/10.1021/acs.jpcb.9b06285.

Bulak, P., Proc, K., Pytlak, A., Puszka, A., Gawdzik, B. & Bieganowski, A. (2021). Biodegradation of different types of plastics by Tenebrio molitor insect. Polymers. 13(20), 3508. https://doi.org/10.3390/polym13203508.

Chateigner-Boutin, A.-L., Ordaz-Ortiz, J., Alvarado, C., Bouchet, B., Durand, S., Verhertbruggen, Y., … Saulnier, L. (2016). Developing Pericarp of Maize: A Model to Study Arabinoxylan Synthesis and Feruloylation. Frontiers in Plant Science. 7(1476), 1–20. https://doi.org/doi:10.3389/fpls.2016.01476.

Chávez Muñoz, J. C., Fernández Terán, R. A., Bravo Moreira, C. D., Intriago Miranda, M. N., Bello Moreira, I. P., Mendoza Cedeño, E. J. & Cesar Fabian, L. Z. (2022). Evaluación de poliestireno expandido (EPS) y polietileno de baja densidad (PEBD) como alimento para larvas de gorgojo negro (Tenebrio molitor). Ciencia Latina Revista Científica Multidisciplinar. 6(4), 2369–2384. https://doi.org/10.37811/cl_rcm.v6i4.2762.

Dhammi, A., van Krestchmar, J. B., Zhu, J., Ponnusamy, L., Gould, F., Reisig, D., Kurtz, R. W. & Roe, R. M. (2022). Impact of Caterpillar Increased Feeding Rates on Reduction of Bt Susceptibility. International Journal of Molecular Sciences. 23(23), 14856. https://doi.org/10.3390/ijms232314856.

Ding, M. Q., Ding, J., Zhang, Z. R., Li, M. X., Cui, C. H., Pang, J. W., Xing, D. F., Ren, N. Q., Wu, W. M. & Yang, S. S. (2024). Biodegradation of various grades of polyethylene microplastics by Tenebrio molitor and Tenebrio obscurus larvae: Effects on their physiology. Journal of environmental management. 358, 120832. https://doi.org/10.1016/j.jenvman.2024.120832.

Gwenzi, W., Gufe, C., Alufasi, R., Makuvara, Z., Marumure, J., Shanmugam, S., Selvasembian, R. & Halabowski, D. (2024). Insects to the rescue? Insights into applications, mechanisms, and prospects of insect-driven remediation of organic contaminants. Science of the Total Environment. 925, 171116. https://doi.org/10.1016/j.scitotenv.2024.171116.

Hong, J. S., Han, T. & Kim, Y. Y. (2020). Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals. 10(11), 2068. https://doi.org/10.3390/ANI10112068.

Horvat, D., Šimić, G., Drezner, G., Lalić, A., Ledenčan, T., Tucak, M., Plavšić, H., Andrić, L. & Zdunić, Z. (2020). Phenolic Acid Profiles and Antioxidant Activity of Major Cereal Crops. Antioxidants. 9(6), 527. https://doi.org/10.3390/antiox9060527.

Hwang, J., Choi, D., Han, S., Jung, S. Y., Choi, J. & Hong, J. (2020). Potential toxicity of polystyrene microplastic particles. Scientific Reports. 10(1), 7391. https://doi.org/10.1038/s41598-020-64464-9.

Ilijin, L., Nikolić, M. V., Vasiljević, Z. Z., Todorović, D., Mrdaković, M., Vlahović, M., ... Perić-Mataruga, V. (2024). Sourcing chitin from exoskeleton of Tenebrio molitor fed with polystyrene or plastic kitchen wrap. International Journal of Biological Macromolecules. 268, 131731. https://doi.org/10.1016/j.ijbiomac.2024.131731.

Iyapo, K. A., Adewole, A. M., Sule, S. O., Oluwatobi, A. S. & Olofintoye, B. O. (2024). Nutritional Composition Profile of Mealworm Larvae (Tenebrio molitor) Reared on Different Substrate: A Potential Protein Substitute for Fishmeal. Nigerian Journal of Entomology. 40(2), 92–100. https://doi.org/10.36108/nje/4202/04.0270.

Jiang, S., Su, T., Zhao, J. & Wang, Z. (2021). Biodegradation of polystyrene by Tenebrio molitor, Galleria mellonella, and Zophobas atratus larvae and comparison of their degradation effects. Polymers. 13(20), 3539. https://doi.org/10.3390/polym13203539.

Jiang, L., Yang, J., Yang, H., Kong, L., , H., Zhu, Y., Zhao, X., Yang, T. & Liu, W. (2024). Advanced Understanding of the Polybrominated Diphenyl Ethers (PBDEs): Insights from Total Environment to Intoxication. Toxicology. 509, 153959. https://doi.org/10.1016/j.tox.2024.153959.

Kwon, G. T., Yuk, H. G., Lee, S. J., Chung, Y. H., Jang, H. S., Yoo, J. S., ... Shin, D. (2020). Mealworm larvae (Tenebrio molitor L.) exuviae as a novel prebiotic material for BALB/c mouse gut microbiota. Food Science and Biotechnology. 29(4), 531-537. https://doi.org/10.1007/s10068-019-00699-1.

Liu, J., Liu, J., Xu, B., Xu, A., Cao, S., Wei, R., Zhou, J., Jiang, M. & Dong, W. (2022). Biodegradation of polyether-polyurethane foam in yellow mealworms (Tenebrio molitor) and effects on the gut microbiome. Chemosphere. 304, 135263. https://doi.org/10.1016/J.CHEMOSPHERE.2022.135263.

Ma, H., Jee, M., Kim, K. & Baik, D. (2024). Effects of Ether Linkage and Benzene Ring Substitution Structures on Thermal and Optical Properties of 6FDA/3DDS-Based Transparent Polyimide Films. Fibers and Polymers. 26(1), 19-25. https://doi.org/10.1007/s12221-024-00793-0.

Machona, O., Chidzwondo, F. & Mangoyi, R. (2022). Tenebrio molitor: possible source of polystyrene-degrading bacteria. BMC Biotechnology. 2022(22), 1–12. https://doi.org/10.1186/s12896-021-00733-3.

Marín-Morales, M. S., Ibarra-Herrera, C. C. & Rivas-Arreola, M. J. (2025). Obtention and Characterization of Chitosan from Exuviae of Tenebrio molitor and Sphenarium purpurascens. ACS omega. 10(16), 17015-17023. https://doi.org/10.1021/acsomega.5c01987.

Meng, W., Sun, H. & Su, G. (2023). Plastic packaging-associated chemicals and their hazards - An overview of reviews. Chemosphere. 331, 138795. https://doi.org/10.1016/j.chemosphere.2023.138795.

Miller, L. M & Coates, J. P. (2025). Interpretation of Infrared Spectra: A Practical and Systematic Approach. Encyclopedia of Analytical Chemistry. R.A. Meyers (Ed.). https://doi.org/10.1002/9780470027318.a5606.pub2.

Mwita, C. S., Muhammad, R., Nettey-Oppong, E. E., Enkhbayar, D., Ali, A., Ahn, J., ... Choi, S. H. (2024). Chitosan Extracted from the Biomass of Tenebrio molitor Larvae as a Sustainable Packaging Film. Materials. 17(15), 3670. https://doi.org/10.3390/ma17153670.

OECD. (2022, Feb 09). Global Plastics Outlook. OECD Library. https://www.oecd-ilibrary.org/environment/data/global-plastic-outlook_c0821f81-en.

Parthasarathy, A., Miranda, R. R., Eddingsaas, N. C., Chu, J., Freezman, I. M., Tyler, A. C. & Hudson, A. O. (2022). Polystyrene degradation by Exiguobacterium sp. RIT 594: preliminary evidence for a pathway containing an atypical oxygenase. Microorganisms. 10(8), 1619. https://doi.org/10.3390/microorganisms10081619.

Peng, B. Y., Chen, Z., Chen, J., Yu, H., Zhou, X., Criddle, C. S., Wu, W. M. & Zhang, Y. (2020). Biodegradation of Polyvinyl Chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environment International. 145, 106106. https://doi.org/10.1016/j.envint.2020.106106.

Przemieniecki, S. W., Kosewska, A., Ciesielski, S. & Kosewska, O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution. 256, 113265. https://doi.org/10.1016/j.envpol.2019.113265.

Pushpadass, H. A., Weber, R. W., Dumais, J. J. & Hanna, M. A. (2010). Biodegradation characteristics of starch–polystyrene loose-fill foams in a composting medium. Bioresource technology. 101(19), 7258-7264. https://doi.org/10.1016/j.biortech.2010.04.039.

Reish, H. M., Witty, R. F., Quade, A. H., Dallas, J. W. & Kirschman, L. J. (2024). Isolation of Plastic Digesting Microbes from the Gastrointestinal Tract of Tenebrio Molitor. bioRxiv. 2024-10. https://doi.org/10.1101/2024.10.16.618709.

Rodríguez-Carreón, A., Ortiz-Rivera, Y., Hernández-Peña, C. C. & Figueroa, C. (2021). Biodegradación de espumas plásticas por larvas de insectos: ¿una estrategia sustentable?. TIP. Revista especializada en ciencias químico-biológicas. 24: 1-10. https://doi.org/10.22201/fesz.23958723e.2021.311.

Salisu, A. & Maigari, Y. S. (2021). Polystyrene and its recycling: A review. Proceedings of Materials Science and Technology. 195–203. https://www.researchgate.net/publication/359135360.

Statista Research Department. (2023, March 24). Annual production of plastics worldwide from 1950 to 2021. Statista. https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/.

Tsochatzis, E. D., Berggreen, I. E., Nørgaard, J. v., Theodoridis, G. & Dalsgaard, T. K. (2021). Biodegradation of expanded polystyrene by mealworm larvae under different feeding strategies evaluated by metabolic profiling using GC-TOF-MS. Chemosphere. 281, 130840. https://doi.org/10.1016/j.chemosphere.2021.130840.

Vargas-Venegas, I., Medaglia-Mata, A. & Chavarría-Pizarro, L. (2024). Desarrollo de un protocolo para producir quitosano a partir de la exuvia larval de Tenebrio molitor. Revista Tecnología en Marcha. 37(3), 3-16. http://dx.doi.org/10.18845/tm.v37i2.6724.

Weaver, D. K., McFarlane, J. E. & Alli, I. (1990). Repellency of volatile fatty acids present in frass of larval yellow mealworms, Tenebrio molitor L. (Coleoptera: Tenebrionidae), to larval conspecifics. Journal of Chemical Ecology. 16(2), 585-593. https://doi.org/10.1007/BF01021788.

Wu, W. M. & Criddle, C. S. (2021). Characterization of biodegradation of plastics in insect larvae. In Methods in enzymology. Academic Press. 648, 95-120 https://doi.org/10.1016/bs.mie.2020.12.029.

Yang, S. S., Brandon, A. M., Andrew Flanagan, J. C., Yang, J., Ning, D., Cai, S. Y., Fan, H. Q., Wang, Z. Y., Ren, J., Benbow, E., Ren, N. Q., Waymouth, R. M., Zhou, J., Criddle, C. S. & Wu, W. M. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere. 191, 979–989. https://doi.org/10.1016/j.chemosphere.2017.10.117.

Yang, S. S., Ding, M. Q., He, L., Zhang, C. H., Li, Q. X., Xing, D. F., Cao, G. L., Zhao, L., Ding, J., Ren, N. Q. & Wu, W. M. (2020). Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization. Science of the Total Environment. 756, 144087. https://doi.org/10.1016/j.scitotenv.2020.144087.

Yang, L., Gao, J., Liu, Y., Zhuang, G., Peng, X., Wu, W. M. & Zhuang, X. (2021). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere. 262, 127818. https://doi.org/10.1016/j.chemosphere.2020.127818.

Zarzosa, G. & Kobayashi, T. (2024). Properties of Chitin and Its Regenerated Hydrogels from the Insect Zophobas morio Fed Citrus Biomass or Polystyrene. Gels. 10(7), 433. https://doi.org/10.3390/gels10070433.

Downloads

Published

2025-12-24

How to Cite

Salazar-Robles, G., Cunill-Flores, J. M., Bravo-Nieves, A., Velázquez-Vázquez, G., López-Valencia, C. S., González-Castillo, L. M., & Olmos-Barrera, D. del R. (2025). Towards Entomoremediation: Plastic Consumption Rates and FTIR-ATR Analysis of Plastic, Frass and Exuviae from Tenebrio Molitor Fed with EPS and Maize. Journal of Environment, 5(5), 18–34. https://doi.org/10.47941/je.3397

Issue

Section

Articles