Earthworms as Soil-Health Bioindicators in Mogadishu Greenhouses: A Comparative Study Under Contrasting Managements
DOI:
https://doi.org/10.47941/je.3405Keywords:
: Soil health, Greenhouse, Earthworm, Gap, Non-gap, SomaliaAbstract
Purpose: Greenhouse farming is rapidly expanding in Mogadishu due to water scarcity and increasing demand for vegetables in the market. However, widespread dependence on chemical inputs raises concerns about the long-term health of soils. This study investigated the influence of management systems, Good Agricultural Practices (GAP) versus non-GAP, on plant and soil biological health across 30 greenhouse farms located on the outskirts of Mogadishu and along the Afgoye corridor.
Methodology: A cross-sectional observational design was applied across 30 greenhouses (9 GAP, 21 non-GAP), with 300 plant-rhizosphere units assessed using non-destructive visual indicators. Metrics included Plant Health Score (PHS), leaf color, turgor, surface soil condition, and the Visual Earthworm Abundance Index (V-EAI). Data collection was undertaken from July through September 2025. Data was analyzed using SPSS V.27. Mann. Whitney U tests and Independent Samples t-Tests assessed differences.
Findings: Results revealed significantly higher biological activity and plant vigor in GAP-managed greenhouses (p < 0.05), with visible earthworms mainly present in GAP greenhouses. Despite similar irrigation and bed formation practices, non-GAP systems showed reduced earthworm presence, lower plant health scores, and greater reliance on chemical inputs.
Unique Contribution Theory, Policy and Practice: The study demonstrates that visual earthworm monitoring is a feasible and effective proxy for soil biological health, offering a scalable method for smallholder farmers and extension agents. It also highlights the ecological benefits of GAP management, emphasizing the role of organic inputs and reduced fumigation in promoting soil life. These findings support integrating bioindicators into sustainable greenhouse agriculture in fragile, water-limited environments. Overall, the study advances SDG 12 (Responsible Consumption and Production) and SDG 15 (Life on Land) by promoting sustainable greenhouse management and safeguarding soil biodiversity.
Downloads
References
A, A., & Entoori, K. (2022). Role of earthworms in soil fertility and its impact on agriculture: A review. International Journal of Fauna and Biological Studies, 9(3), 55–63. https://doi.org/10.22271/23940522.2022.v9.i3a.907
Aalok, A., Tripathi, A. K., & Soni, P. (2008). Vermicomposting: A Better Option for Organic Solid Waste Management. Journal of Human Ecology, 24(1), 59–64. https://doi.org/10.1080/09709274.2008.11906100
Ahmed, N., & Al-Mutairi, K. A. (2022). Earthworms Effect on Microbial Population and Soil Fertility as Well as Their Interaction with Agriculture Practices. Sustainability, 14(13), 7803. https://doi.org/10.3390/su14137803
Ali, U., Sajid, N., Khalid, A., Riaz, L., Rabbani, M. M., Syed, J. H., & Malik, R. N. (2015). A review on vermicomposting of organic wastes. Environmental Progress & Sustainable Energy, 34(4), 1050–1062. https://doi.org/10.1002/ep.12100
Ayangbenro, A. S., Chukwuneme, C. F., Ayilara, M. S., Kutu, F. R., Khantsi, M., Adeleke, B. S., Glick, B. R., & Babalola, O. O. (2022). Harnessing the Rhizosphere Soil Microbiome of Organically Amended Soil for Plant Productivity. Agronomy, 12(12), 3179. https://doi.org/10.3390/agronomy12123179
Ayuke, F. O., Pulleman, M. M., Vanlauwe, B., De Goede, R. G. M., Six, J., Csuzdi, C., & Brussaard, L. (2011). Agricultural management affects earthworm and termite diversity across humid to semi-arid tropical zones. Agriculture, Ecosystems & Environment, 140(1–2), 148–154. https://doi.org/10.1016/j.agee.2010.11.021
Azevedo, T., Gonçalves, M., Silva-Reis, R., Medeiros-Fonseca, B., Roboredo, M., Sousa, J. R., Oliveira, P. A., Pinto, M. D. L., Peixoto, F., Gaivão, I., Matos, M., & Coimbra, A. M. (2024). Do endocrine-disrupting compounds impact earthworms? A comprehensive evidence review. Reviews in Environmental Science and Bio/Technology, 23(3), 633–677. https://doi.org/10.1007/s11157-024-09698-z
Bartz, M. L. C., Dudas, R. T., Demetrio, W. C., & Brown, G. G. (2024). Earthworms as soil health indicators in no-tillage agroecosystems. European Journal of Soil Biology, 121, 103605. https://doi.org/10.1016/j.ejsobi.2024.103605
Bhaduri, D., Pal, S., Purakayastha, T. J., Chakraborty, K., Yadav, R. S., & Akhtar, Mohd. S. (2015). Soil Quality and Plant-Microbe Interactions in the Rhizosphere. In E. Lichtfouse (Ed.), Sustainable Agriculture Reviews (Vol. 17, pp. 307–335). Springer International Publishing. https://doi.org/10.1007/978-3-319-16742-8_9
Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., Dai, J., Dendooven, L., Peres, G., Tondoh, J. E., Cluzeau, D., & Brun, J. ‐J. (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science, 64(2), 161–182. https://doi.org/10.1111/ejss.12025
Boruah, T., & Deka, H. (2023). Comparative investigation on synergistic changes in enzyme activities during vermicomposting of cereal grain processing industry sludge employing three epigeic earthworm species. Environmental Science and Pollution Research, 30(59), 123324–123334. https://doi.org/10.1007/s11356-023-31043-0
Cardarelli, M., Woo, S. L., Rouphael, Y., & Colla, G. (2022). Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops. Plants, 11(3), 259. https://doi.org/10.3390/plants11030259
Cenci, R. M., & Sena, F. (Eds.). (2006). Bio-Bio Project: Based on conclusions from the International Workshop on Biodiversity-Bioindication to evaluate soil health, ISPRA 22 June 2006 Sala Michelangelo - ed. 26. Office for Official Publications of the European Communities.
Darwin, C. (2009). The Formation of Vegetable Mould through the Action of Worms: With Observations on their Habits (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511703850
Edwards, C. A. (Ed.). (2004). Earthworm Ecology (0 ed.). CRC Press. https://doi.org/10.1201/9781420039719
Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12(11), 1238–1249. https://doi.org/10.1111/j.1461-0248.2009.01360.x
Fründ, H.-C., Graefe, U., & Tischer, S. (2011). Earthworms as Bioindicators of Soil Quality. In A. Karaca (Ed.), Biology of Earthworms (Vol. 24, pp. 261–278). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-14636-7_16
FAO (2003). Development of a Framework for Good Agricultural Practices. Food and Agriculture Organization of the United Nations, Rome.
Ghosh, S. (2018). Environmental pollutants, pathogens and the immune system in earthworms. Environmental Science and Pollution Research, 25(7), 6196–6208. https://doi.org/10.1007/s11356-017-1167-8
Gupta, S., & Kumar, S. (2024). Earthworms as Biological Tools for Assessing Soil Pollutants. Environment and Ecology, 42(4C), 2004–2014. https://doi.org/10.60151/envec/SLAN9416
Hirano, T., & Tamae, K. (2011). Earthworms and Soil Pollutants. Sensors, 11(12), 11157–11167. https://doi.org/10.3390/s111211157
Jat, H. S., Choudhary, M., Kakraliya, S. K., Gora, M. K., Kakraliya, M., Kumar, V., Priyanka, Poonia, T., McDonald, A. J., Jat, M. L., Sharma, P. C., & Abdallah, A. M. (2022). A Decade of Climate-Smart Agriculture in Major Agri-Food Systems: Earthworm Abundance and Soil Physico-Biochemical Properties. Agronomy, 12(3), 658. https://doi.org/10.3390/agronomy12030658
Kaushal, M., Kolombia, Y. A., Alakonya, A. E., & Masso, C. (2025). Comparing soil microbial diversity in smallholder plantain backyard gardens and main farms in Western and Central Africa. Scientific Reports, 15(1), 30220. https://doi.org/10.1038/s41598-025-14533-8
Kooch, Y., Heydari, M., Parsapour, M. K., & Valkó, O. (2025). Earthworm: A keystone species of soil quality, health, and functions. Acta Oecologica, 128, 104106. https://doi.org/10.1016/j.actao.2025.104106
Lang, B., Betancur-Corredor, B., & Russell, D. J. (2023). Earthworms increase soil mineral nitrogen content – a meta-analysis. https://doi.org/10.25674/SO95ISS1ID308
Lavelle, P., & Spain, A. V. (2004). Soil Ecology. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48162-6
Liu, T., Chen, X., Gong, X., Lubbers, I. M., Jiang, Y., Feng, W., Li, X., Whalen, J. K., Bonkowski, M., Griffiths, B. S., Hu, F., & Liu, M. (2019). Earthworms Coordinate Soil Biota to Improve Multiple Ecosystem Functions. Current Biology, 29(20), 3420-3429.e5. https://doi.org/10.1016/j.cub.2019.08.045
Mcinga, S., Muzangwa, L., Janhi, K., & Mnkeni, P. N. S. (2020). Conservation Agriculture Practices Can Improve Earthworm Species Richness and Abundance in the Semi-Arid Climate of Eastern Cape, South Africa. Agriculture, 10(12), 576. https://doi.org/10.3390/agriculture10120576
Mohite, D. D., Chavan, S. S., Jadhav, V. S., Kanase, T., Kadam, M. A., & Singh, A. S. (2024). Vermicomposting: A holistic approach for sustainable crop production, nutrient-rich bio fertilizer, and environmental restoration. Discover Sustainability, 5(1), 60. https://doi.org/10.1007/s43621-024-00245-y
Patel, H. K., Vyas, R. V., Ramesh, A., & Solanki, J. P. (2020). Rhizosphere Microbes: Driver for Soil Health Management. In S. K. Sharma, U. B. Singh, P. K. Sahu, H. V. Singh, & P. K. Sharma (Eds.), Rhizosphere Microbes (Vol. 23, pp. 235–258). Springer Singapore. https://doi.org/10.1007/978-981-15-9154-9_9
Prasad, M., Chaudhary, M., Choudhary, M., Kumar, T. K., & Jat, L. K. (2017). Rhizosphere Microorganisms Towards Soil Sustainability and Nutrient Acquisition. In V. S. Meena, P. K. Mishra, J. K. Bisht, & A. Pattanayak (Eds.), Agriculturally Important Microbes for Sustainable Agriculture (pp. 31–49). Springer Singapore. https://doi.org/10.1007/978-981-10-5589-8_2
Purohit, H. J., Pandit, P., Pal, R., Warke, R., & Warke, G. M. (2024). Soil microbiome: An intrinsic driver for climate-smart agriculture. Journal of Agriculture and Food Research, 18, 101433. https://doi.org/10.1016/j.jafr.2024.101433
Rochfort, S. J., Ezernieks, V., & Yen, A. L. (2009). NMR-based metabolomics using earthworms as potential indicators for soil health. Metabolomics, 5(1), 95–107. https://doi.org/10.1007/s11306-008-0140-4
Rodríguez-Berbel, N., Soria, R., Villafuerte, A. B., Ortega, R., & Miralles, I. (2022). Short-Term Dynamics of Bacterial Community Structure in Restored Abandoned Agricultural Soils under Semi-Arid Conditions. Agronomy, 13(1), 86. https://doi.org/10.3390/agronomy13010086
Ruf, T. (2025). Look at our soil! Visual soil evaluation is more important than ever. Soil Use and Management, 41(1), e70049. https://doi.org/10.1111/sum.70049
Rupani, P. F., Embrandiri, A., Garg, V. K., Abbaspour, M., Dewil, R., & Appels, L. (2023). Vermicomposting of Green Organic Wastes Using Eisenia Fetida Under Field Conditions: A Case Study of a Green Campus. Waste and Biomass Valorization, 14(8), 2519–2530. https://doi.org/10.1007/s12649-022-02004-4
Schon, N. L., Fraser, P. M., & Mackay, A. D. (2023). Earthworms for inclusion as an indicator of soil biological health in New Zealand pastures. New Zealand Journal of Agricultural Research, 66(3), 208–223. https://doi.org/10.1080/00288233.2022.2041676
Sharan, G., & Madhavan, T. (2010). Cropping in Semi-arid North-west India in Greenhouse with Ground Coupling Shading and Natural Ventilation for Environmental Control. International Journal for Service Learning in Engineering, Humanitarian Engineering and Social Entrepreneurship, 5(1), 148–169. https://doi.org/10.24908/ijsle.v5i1.2228
SWALIM, F. (2013). Status Needs and Priorities for Status Needs and Priorities for Sustainable Soil Management in Somalia. https://www.fao.org/fileadmin/user_upload/GSP/docs/South_east_partnership/Somalia.pdf
Szilágyi, A., Plachi, E., Nagy, P., Simon, B., & Centeri, C. (2021). Assessing Earthworm Populations in Some Hungarian Horticultural Farms: Comparison of Conventional, Organic and Permaculture Farming. The 1st International Electronic Conference on Biological Diversity, Ecology and Evolution, 11. https://doi.org/10.3390/BDEE2021-09416
Tiwari, R. K., Singh, S., Pandey, R. S., & Sharma, B. (2016). Enzymes of Earthworms as Indicators of Pesticide Pollution in Soil. Advances in Enzyme Research, 04(04), 113–124. https://doi.org/10.4236/aer.2016.44011
Yadav, A. N., Singh, J., Singh, C., & Yadav, N. (Eds.). (2021). Current Trends in Microbial Biotechnology for Sustainable Agriculture. Springer Singapore. https://doi.org/10.1007/978-981-15-6949-4
Zeng, Y., Verhoef, A., Vereecken, H., Ben‐Dor, E., Veldkamp, T., Shaw, L., Van Der Ploeg, M., Wang, Y., & Su, Z. (2025). Monitoring and Modeling the Soil‐Plant System Toward Understanding Soil Health. Reviews of Geophysics, 63(1), e2024RG000836. https://doi.org/10.1029/2024RG000836
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ibrahim Jamal Ahmed, Yasin Sheikh Amir Sheikh Ibrahim, Abdullahi Adam Salah, Abdirahman Jamal Ahmed, Hibo Abdinasir Mohamud, Abdisamad Abdidahir Adan, Abdisalan Mohamud Sheikh Isak, Abdulkadir Abdullahi Ibrahim

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.