Influence of Welding Parameters on Strength of Metal Inert Gas Welded Mild Steel Joints
DOI:
https://doi.org/10.47941/ijce.1928Keywords:
Weld Parameters, Optimization, Taguchi Relational Analysis, MIG WeldingAbstract
Purpose: MIG welding is a type of arc welding that uses a continuous solid wire electrode and a shielding gas to join two metals by heating them with an electric arc. Process parameters including current, voltage, preheat temperature and post-weld heat treatment were studied. Then, optimize process parameters of experiments done in previous work using a Taguchi Orthogonal Array (L27) design.
Methodology: A grey based Taguchi method is used to optimize the process parameters. The analysis of variance (ANOVA) is applied to assess the significance of the input parameters on the response parameters. A mathematical model is developed using multiple linear regression equations.
Findings: Results of this research show that it is possible to get higher strengths of weld joints using Taguchi design. Increasing current (I) and post-weld heat treatment temperature (PWT) increases strength of the studied welded joints, and vice versa.
Unique contribution to theory, policy and practice: Future research should validate the findings of the current research through experimental investigations.
Downloads
References
E. Karayel and Y. Bozkurt, “Additive manufacturing method and different welding applications,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 11424–11438, 2020.
V. Okai, H. F. Chahul, R. A. Wuana, I. A. Barnabas, and G. F. Tolufashe, “Corrosion inhibition potentials of Cucurbita polyesteramide urethane on mild steel in hydrochloric acid medium: Experimental and computational studies,” Sci. Afr., vol. 12, p. e00776, 2021.
S. Kumar and R. Singh, “Optimization of process parameters of metal inert gas welding with preheating on AISI 1018 mild steel using grey based Taguchi method,” Measurement, vol. 148, p. 106924, 2019.
S. M. Tabatabaeipour and F. Honarvar, “A comparative evaluation of ultrasonic testing of AISI 316L welds made by shielded metal arc welding and gas tungsten arc welding processes,” J. Mater. Process. Technol., vol. 210, no. 8, pp. 1043–1050, Jun. 2010, doi: 10.1016/j.jmatprotec.2010.02.013.
J. Norrish, J. Polden, and I. Richardson, “A review of wire arc additive manufacturing: Development, principles, process physics, implementation and current status,” J. Phys. Appl. Phys., vol. 54, no. 47, p. 473001, 2021.
E. A. Gyasi, “Welding processes of metals for offshore environment: Underwater welding,” 2019.
N. Kumar, R. Sherlock, and D. Tormey, “Prediction of weld interface depth and width at optimum laser welding temperature for polypropylene,” Procedia CIRP, vol. 81, pp. 1272–1277, 2019.
V. K. Yalamanchili, D. A. Galindo, and J. C. Mach, “Robust Virtual Welding Process Optimization,” Procedia Comput. Sci., vol. 140, pp. 342–350, 2018.
A. Arumugam and A. Pramanik, “Review of Experimental and Finite Element Analyses of Spot Weld Failures in Automotive Metal Joints.,” Jordan J. Mech. Ind. Eng., vol. 14, no. 3, 2020.
D. Das, S. Jaypuria, D. K. Pratihar, and G. G. Roy, “Weld optimisation,” Sci. Technol. Weld. Join., vol. 26, no. 3, pp. 181–195, 2021.
C. Zhu, X. Tang, Y. He, F. Lu, and H. Cui, “Effect of preheating on the defects and microstructure in NG-GMA welding of 5083 Al-alloy,” J. Mater. Process. Technol., vol. 251, pp. 214–224, 2018.
S. Arunkumar et al., “Taguchi optimization of metal inert gas (MIG) welding parameters to withstand high impact load for dissimilar weld joints,” Mater. Today Proc., vol. 56, pp. 1411–1417, 2022.
M. Jawad et al., “Revealing the microstructure and mechanical attributes of pre-heated conditions for gas tungsten arc welded AISI 1045 steel joints,” Int. J. Press. Vessels Pip., vol. 192, p. 104440, 2021.
R. Pradhan, A. Joshi, M. Sunny, and A. Sarkar, “Performance of predictive models to determine weld bead shape parameters for shielded gas metal arc welded T-joints,” Mar. Struct., vol. 86, p. 103290, 2022.
M. M. Tafarroj, M. A. Moghaddam, H. Dalir, and F. Kolahan, “Using Hybrid Artificial Neural Network and Particle Swarm Optimization Algorithm for Modeling and Optimization of Welding Process,” J. Adv. Manuf. Syst., vol. 20, no. 04, pp. 783–799, 2021.
K. Srinivas, P. R. Vundavilli, and M. Manzoor Hussain, “Weld Quality Prediction of PAW by Using PSO Trained RBFNN,” in Advances in Materials and Manufacturing Engineering, Springer, 2020, pp. 433–439.
C. S. Abima, S. A. Akinlabi, N. Madushele, O. S. Fatoba, and E. T. Akinlabi, “Multi-objective optimization of process parameters in TIG-MIG welded AISI 1008 steel for improved structural integrity,” Int. J. Adv. Manuf. Technol., vol. 118, no. 11, pp. 3601–3615, 2022.
B. Aftab and Y. Mishra, “Optimisation of Process Parameters for MIG Welding byUsing Grey Relational Analysis,” 2020.
M. Osman et al., “Experimental Study of Single Pass Welding Parameter Using Robotic Metal Inert Gas (MIG) Welding Process,” in Advances in Mechatronics, Manufacturing, and Mechanical Engineering, Springer, 2021, pp. 10–21.
R. R. Gidde, “Design optimization of micromixer with circular mixing chambers (M-CMC) using Taguchi-based grey relational analysis,” Int. J. Chem. React. Eng., vol. 18, no. 9, 2020.
M. Rana, T. Singh, V. K. Sharma, A. Saini, and J. Singh, “Optimization of surface integrity in face milling of AISI 52,100 alloy steel using Taguchi based grey relational analysis,” Mater. Today Proc., vol. 50, pp. 2105–2110, 2022.
P. Yadav and P. Khanna, “Effect of input parameters on weld bead geometry and weld dilution for weld surfacing of flux cored 308L stainless steel on low carbon steel,” Mater. Today Proc., 2022.
S. L. Meena, R. Butola, M. A. Khan, R. Walia, and Q. Murtaza, “Influence of process parameters in synergic MIG welding of 304L stainless steel using response surface methodology,” Adv. Mater. Process. Technol., pp. 1–10, 2022.
O. O. Ogbeide, K. Akeredolu, and S. A. Omotehinse, “Optimization of tensile strength of butt joint weldment on mild steel plate using response surface methodology,” J. Appl. Res. Ind. Eng., vol. 9, no. 1, pp. 50–58, 2022.
D. K. Adak, D. Senapati, and P. Dutta, “Parameters optimisation for submerged arc welding of mild steel weld bead geometry using response surface methodology,” J. Mech. Contin. Math. Sci., vol. 17, no. 8, 2022.
D. Pathak, D. Kumar, R. P. Singh, and V. Balu, “Optimization of Process Variables for Prediction of Penetration Depth of HSLA Steel Welds Using Response Surface Methodology,” presented at the Key Engineering Materials, Trans Tech Publ, 2022, pp. 119–128.
M. T. A. Al-basheer, “Design and Development of an Automated Metal Inert Gas/Metal Active Gas Welding Machine,” 2019.
A. T. Assefa et al., “Experimental investigation and parametric optimization of the tungsten inert gas welding process parameters of dissimilar metals,” Materials, vol. 15, no. 13, p. 4426, 2022.
J. L. Meseguer-Valdenebro, A. Portoles, and E. Matínez-Conesa, “Electrical parameters optimisation on welding geometry in the 6063-T alloy using the Taguchi methods,” Int. J. Adv. Manuf. Technol., vol. 98, no. 9, pp. 2449–2460, 2018.
B. Mallick, K. Halder, A. S. Hameed, M. S. J. A. Suaidy, and A. K. Bandapaddayya, “Experimental investigation for multi characteristics optimization of MIG welding on 304 stainless steel using desirability function analysis,” J. Mines Met. Fuels, pp. 144–150, 2020, doi: 10.18311/jmmf/2020/27645.
D. Q. Zhao, S. P. Pan, Y. Zhang, P. K. Liaw, and J. W. Qiao, “Structure prediction in high-entropy alloys with machine learning,” Appl. Phys. Lett., vol. 118, no. 23, p. 231904, Jun. 2021, doi: 10.1063/5.0051307.
B. M. Girish, H. S. Siddesh, and B. M. Satish, “Taguchi grey relational analysis for parametric optimization of severe plastic deformation process,” SN Appl. Sci., vol. 1, no. 8, p. 937, Jul. 2019, doi: 10.1007/s42452-019-0982-6.
Miller Welds, “Preheat in Welding: What Is It and When Should You Use It? | MillerWelds,” May 28, 2020. https://www.millerwelds.com/resources/article-library/preheat-in-welding-what-is-it-and-when-should-you-use-it (accessed Dec. 23, 2022).
L. Ng’etich, A. Mayaka, C. Ondieki, and E. Odhong, “Experimental Investigation Of TIG Welding Parameters In Butt-Joint Configuration Of Mild Steel,” J. Multidiscip. Eng. Sci. Technol. JMEST, vol. 8, no. 8, pp. 14476–14486, 2021.
S.-J. Huang, M. Subramani, and C.-C. Chiang, “Effect of hybrid reinforcement on microstructure and mechanical properties of AZ61 magnesium alloy processed by stir casting method,” Compos. Commun., vol. 25, p. 100772, Jun. 2021, doi: 10.1016/j.coco.2021.100772.
Y. Jie, W. Guan, S. Li, Z. Liu, and Y. Gong, “Effect of post-weld heat treatment on microstructure and mechanical properties of welded joints of 6061-T6 aluminum alloy,” Trans. Nonferrous Met. Soc. China, vol. 29, no. 10, pp. 2035–2046, 2019.
J. Wang, X. Chen, L. Yang, and G. Zhang, “Effect of preheat & post-weld heat treatment on the microstructure and mechanical properties of 6061-T6 aluminum alloy welded sheets,” Mater. Sci. Eng. A, vol. 841, p. 143081, Apr. 2022, doi: 10.1016/j.msea.2022.143081.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Washington Odhiambo Obura, Prof. (Eng.) Abel N. Mayaka, Prof. Charles M. Ondieki
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.