Open-Source Modelling Tools in Chemical Engineering: Opportunities and Adoption in Malawi and Africa

Authors

  • Blessings G. Malimusi The University of Edinburgh
  • Blessings G. Masina Malawi University of Science and Technology

DOI:

https://doi.org/10.47941/ijce.3492

Keywords:

Open-source modelling, Chemical engineering education, Computational modelling tools, Decision-support framework, Resource-constrained institutions

Abstract

Purpose: Computational modelling is central to chemical engineering education, research, and process design, yet sustained access to modelling capabilities in many low-resource institutions remains limited by high licensing costs and dependence on proprietary software ecosystems. This study examines the potential of open-source modelling tools to provide technically robust and institutionally sustainable alternatives, addressing persistent gaps in tool selection, curriculum integration, and long-term adoption. Methodology: A systematic review and synthesis of open-source computational modelling tools across molecular, continuum, and process scales is conducted. Based on this analysis, a decision tree is developed to link modelling objectives and physical-fidelity requirements to appropriate open-source tools. In parallel, a decision-driven institutional adoption framework is proposed to guide phased implementation in resource-constrained chemical engineering environments. Findings: The review shows that mature open-source tools now exist across the full modelling hierarchy, enabling core chemical engineering workflows without reliance on proprietary platforms. The proposed decision tree supports transparent and reproducible software selection, while the adoption framework highlights the central role of infrastructure readiness, skills development, curriculum maturity, and governance in sustaining open-source uptake. Explicit decision points and feedback loops are identified as critical for managing heterogeneous infrastructure and evolving human capacity. Unique contribution to theory, practice and policy: This work delivers an integrated, decision-based approach to open-source modelling adoption in chemical engineering, linking technical capability with institutional capacity building. It provides actionable guidance for educators and institutions seeking equitable and sustainable digital modelling ecosystems, with relevance beyond the Malawian and Sub-Saharan African context.

Downloads

Download data is not yet available.

Author Biographies

Blessings G. Malimusi, The University of Edinburgh

Postgraduate Researcher, School of Engineering

Blessings G. Masina, Malawi University of Science and Technology

Lecturer: Faculty of Engineering

References

Ali, M. A., Hu, C., Yuan, B., Jahan, S., Saleh, M. S., Guo, Z., Gellman, A. J., & Panat, R. (2021). Breaking the barrier to biomolecule limit-of-detection via 3D printed multi-length-scale graphene-coated electrodes. Nature Communications, 12(1), 7077.

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., & Wells, G. N. (2015a). The FEniCS project version 1.5. Archive of Numerical Software, 3(100).

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., & Wells, G. N. (2015b). The FEniCS Project Version 1.5. Archive of Numerical Software, Vol 3, Starting Point and Frequency: Year: 2013. https://doi.org/10.11588/ANS.2015.100.20553

Altarawneh, M. (2024). Virtual undergraduate chemical engineering labs based on density functional theory calculations. Chemistry Teacher International, 6(1), 5–17.

Angannan, A., Ravi, A., & Sreemahadevan, S. (2025). Technoeconomic assessment of a sorghum-based biorefinery using DWSIM Pro: A comparative study with Aspen Plus. Bioresource Technology, 435, 132958. https://doi.org/10.1016/j.biortech.2025.132958

Ansari, M., Alkhazaleh, H. A., Abuhashish, F., & Arram, A. W. (2025). Leveraging open-source software to advance learning technologies in higher education for interior design. International Journal of Innovative Research and Scientific Studies, 8(5), 621–631. https://doi.org/10.53894/ijirss.v8i5.8778

aspenONE® for Academics | AspenTech. (n.d.). Retrieved 7 December 2025, from https://www.aspentech.com/en/academic-program-for-education/aspenone-for-academics-products

Babalola, S. S., & Genga, C. A. (2025). Wartime and Online Education: A Bibliometric Analysis. Research in Social Sciences and Technology, 10(1), 119–143. https://doi.org/10.46303/ressat.2025.7

Baroroh, U., Biotek, M., Muscifa, Z. S., Destiarani, W., Rohmatullah, F. G., & Yusuf, M. (2023). Molecular interaction analysis and visualization of protein-ligand docking using Biovia Discovery Studio Visualizer. Indonesian Journal of Computational Biology (IJCB), 2(1), 22–30.

Bartolome, P. S., & Van Gerven, T. (2022). A comparative study on Aspen Hysys interconnection methodologies. Computers & Chemical Engineering, 162, 107785.

Bock, L. V., Gabrielli, S., Kolář, M. H., & Grubmüller, H. (2023). Simulation of Complex Biomolecular Systems: The Ribosome Challenge. Annual Review of Biophysics, 52(1), 361–390. https://doi.org/10.1146/annurev-biophys-111622-091147

Botha, C., & Niekerk, W. van. (2025). Developing Student Competency in Engineering Tools Using Open-Source Software in Undergraduate Engineering Education. Proceedings from the International Research Symposium on Problem-Based Learning (IRSPBL). https://doi.org/10.54337/irspbl-11082

Chaurasia, A. S. (2021). Computational fluid dynamics and comsol Multiphysics: A step-by-step approach for chemical engineers. Apple Academic Press.

Chávez Thielemann, H., Cardellini, A., Fasano, M., Bergamasco, L., Alberghini, M., Ciorra, G., Chiavazzo, E., & Asinari, P. (2019). From GROMACS to LAMMPS: GRO2LAM: A converter for molecular dynamics software. Journal of Molecular Modeling, 25(6), 147. https://doi.org/10.1007/s00894-019-4011-x

Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y.-C. (2014). OpenFOAM for Computational Fluid Dynamics. Notices of the American Mathematical Society, 61(4), 354. https://doi.org/10.1090/noti1095

Cummings, P. T., & Gilmer, J. B. (2019). Open-source molecular modeling software in chemical engineering. Current Opinion in Chemical Engineering, 23, 99–105. https://doi.org/10.1016/j.coche.2019.03.008

De Maria, C., Di Pietro, L., Ravizza, A., Lantada, A. D., & Ahluwalia, A. D. (2020). Open-source medical devices: Healthcare solutions for low-, middle-, and high-resource settings. In Clinical engineering handbook (pp. 7–14). Elsevier.

Font, R., & Peria, F. (2013). The Finite Element Method with FreeFem++ for beginners. Electronic Journal of Mathematics & Technology, 7(4).

Ford, W. (2014). Numerical Linear Algebra with Applications: Using MATLAB and Octave. Academic Press.

Gama, L. C., Chipeta, G. T., & Chawinga, W. D. (2022). Electronic learning benefits and challenges in Malawi’s higher education: A literature review. Education and Information Technologies, 27(8), 11201–11218. https://doi.org/10.1007/s10639-022-11060-1

Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., De Gironcoli, S., Delugas, P., DiStasio, R. A., Ferretti, A., Floris, A., Fratesi, G., … Baroni, S. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29(46), 465901. https://doi.org/10.1088/1361-648X/aa8f79

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., & Dabo, I. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantumsimulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502.

Goh, B., & Choi, J. (2025). All‐Atomic Computational Perspectives for Understanding Morphable Electric Double Layers: A Review. Small (Weinheim an Der Bergstrasse, Germany), 21(47), e03931. https://doi.org/10.1002/smll.202503931

Goodwin, D. G., Speth, R. L., Moffat, H. K., & Weber, B. W. (2018). Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Zenodo.

Gownaris, N. J., Vermeir, K., Bittner, M.-I., Gunawardena, L., Kaur-Ghumaan, S., Lepenies, R., Ntsefong, G. N., & Zakari, I. S. (2022). Barriers to Full Participation in the Open Science Life Cycle among Early Career Researchers. Data Science Journal, 21(1). https://doi.org/10.5334/dsj-2022-002

Hagg, A., & Kirschner, K. N. (2023). Open-Source Machine Learning in Computational Chemistry. Journal of Chemical Information and Modeling, 63(15), 4505–4532. https://doi.org/10.1021/acs.jcim.3c00643

Hansen, J. S. (2011). GNU octave: Beginner’s guide: Become a proficient octave user by learning this high-level scientific numerical tool from the ground up. Packt Publishing Ltd.

Iliev, I. K., Gizzatullin, A. R., Filimonova, A. A., Chichirova, N. D., & Beloev, I. H. (2023). Numerical simulation of processes in an electrochemical cell using COMSOL Multiphysics. Energies, 16(21), 7265.

Kamau, J., & Namuye, S. (2012). A Review of Users Adoption of Open Source Software in Africa. Computer and Information Science, 5(5), p45. https://doi.org/10.5539/cis.v5n5p45

Kluyver Thomas, Ragan-Kelley Benjamin, Pérez Fernando, Granger Brian, Bussonnier Matthias, Frederic Jonathan, Kelley Kyle, Hamrick Jessica, Grout Jason, Corlay Sylvain, Ivanov Paul, Avila Damián, Abdalla Safia, Willing Carol, & Jupyter Development Team. (2016). Jupyter Notebooks – a publishing format for reproducible computational workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas. IOS Press. https://doi.org/10.3233/978-1-61499-649-1-87

Kodhek, D. K., & Kamau, J. W. (2025). Beyond Free: Hidden Costs as Major Contributors to Owning Open Source Software in Open Distance and E-Learning (ODEL) Departments of Universities in Embu and Kiambu Counties, Kenya. African Journal of Empirical Research, 6(2), 134–146. https://doi.org/10.51867/ajernet.6.2.11

Kumar, G., Mishra, R. R., & Verma, A. (2022). Introduction to molecular dynamics simulations. In Forcefields for atomistic-scale simulations: Materials and applications (pp. 1–19). Springer.

Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B., & Hargus, C. (2017). The atomic simulation environment—A Python library for working with atoms. Journal of Physics: Condensed Matter, 29(27), 273002.

Manorosoa, Z. A., Chrysochoos, A., Jelea, A., Monerie, Y., & Péralès, F. (2025). Atomistic/mesoscopic approach to the grains boundaries fracture: The case of UO2. Engineering Fracture Mechanics, 320, 111029.

Marin-Laflèche, A., Haefele, M., Scalfi, L., Coretti, A., Dufils, T., Jeanmairet, G., Reed, S. K., Alessandra, S., Berthin, R., & Bacon, C. (2020). MetalWalls: A classical molecular dynamics software dedicated to the simulation of electrochemical systems. Journal of Open Source Software, 5(53), 2373.

Mengesha, N. (2010). Technology Capacity Development through OSS Implementation: The Case of Public Higher Education Institutions in Ethiopia. The African Journal of Information Systems, 2(1). https://digitalcommons.kennesaw.edu/ajis/vol2/iss1/2

Molel, E. L., & Fuller, T. F. (2023). Application of open-source, python-based tools for the simulation of electrochemical systems. Journal of The Electrochemical Society, 170(10), 103501.

Mwangi, K. W., Mainye, N., Ouso, D. O., Esoh, K., Muraya, A. W., Mwangi, C. K., Naitore, C., Karega, P., Kibet-Rono, G., Musundi, S., Mutisya, J., Mwangi, E., Mgawe, C., Miruka, S., Kibet, C. K., & OpenScienceKE Collaborators. (2021). Open Science in Kenya: Where Are We? Frontiers in Research Metrics and Analytics, 6, 669675. https://doi.org/10.3389/frma.2021.669675

Mwelwa, J., Boulton, G., Wafula, J. M., & Loucoubar, C. (2020a). Developing Open Science in Africa: Barriers, Solutions and Opportunities. Data Science Journal, 19(1). https://doi.org/10.5334/dsj-2020-031

Mwelwa, J., Boulton, G., Wafula, J. M., & Loucoubar, C. (2020b). Developing Open Science in Africa: Barriers, Solutions and Opportunities. Data Science Journal, 19(1), 31. https://doi.org/10.5334/dsj-2020-031

Ngobe, B., Diale, R., Phasha, M., Molepo, M., & Chauke, H. (2022). Ab-initio techniques, VASP and CASTEP, are used to investigate the electronic properties of B2 compounds formed between Ti and group VIII elements-a comparative study. MATEC Web of Conferences, 370, 02005.

Ntorukiri, T. B., Kirugua, J. M., & Kirimi, F. (2022). Policy and infrastructure challenges influencing ICT implementation in universities: A literature review. Discover Education, 1(1), 19. https://doi.org/10.1007/s44217-022-00019-6

Octave, G. N. U. (2022). GNU octave. Línea]. Available: Http://Www. Gnu. Org/Software/Octave.

Ogunmakin, R. (2018). Internet Capacity of Higher Education and Research Institutes in Africa: The Need for National Research Education Network. American Journal of Educational Research, 6(6), 586–591. https://doi.org/10.12691/education-6-6-1

Okafor, I. A., Mbagwu, S. I., Chia, T., Hasim, Z., Udokanma, E. E., & Chandran, K. (2022). Institutionalizing Open Science in Africa: Limitations and Prospects. Frontiers in Research Metrics and Analytics, 7, 855198. https://doi.org/10.3389/frma.2022.855198

Orncompa, P., Jeyammuangpak, A., Saikasem, S., Nantasaksiri, K., Charoen-Amornkitt, P., Suzuki, T., & Tsushima, S. (2024). Modeling a polymer electrolyte fuel cell cathode for investigating the effects of cracks in a microporous layer. AIP Conference Proceedings, 3236(1), 090009. https://doi.org/10.1063/5.0236663

Oyegoke, T. (2023). COCO, a process simulator: Methane oxidation simulation & its agreement with commercial simulator’s predictions. Chemical Product and Process Modeling, 18(6), 995–1004. https://doi.org/10.1515/cppm-2023-0035

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71

Patpatiya, P. (2022). A Comparative Motion Study of Mated Gears on AutoCAD and SOLIDWORKS. In Advances in augmented reality and virtual reality (pp. 57–72). Springer.

Pearce, J. M. (2020). Economic savings for scientific free and open source technology: A review. HardwareX, 8, e00139. https://doi.org/10.1016/j.ohx.2020.e00139

Peter, U. I., Orubebe, E. D., & Oladokun, B. D. (2024). Transforming Education in Nigerian Universities: The Role of Free and Open-Source Software (FOSS) in Teaching and Learning. Asian Review of Social Sciences, 13(1), 39–47. https://doi.org/10.70112/arss-2024.13.1.4239

Pienaar, H. (2023). Editorial: Open science in Africa. Frontiers in Research Metrics and Analytics, 8. https://doi.org/10.3389/frma.2023.1233867

Pironneau, O. (2017). FreeFem++: A High Level MultiPhysics Finite Element Software. URL: Https://Sinews. Siam. Org/Details-Page/Freefem-a-High-Level-Multiphysics-Finite-Elementsoftware (Accessed Date: 18.02. 2021).

Ponikarov, A. (2024). Modeling of heat exchangers in ANSYS CFX for the digital twins development. E3S Web of Conferences, 583, 03021.

Prince, M. J., & Felder, R. M. (2006). Inductive Teaching and Learning Methods: Definitions, Comparisons, and Research Bases. Journal of Engineering Education, 95(2), 123–138. https://doi.org/10.1002/j.2168-9830.2006.tb00884.x

Rajagopal, K., Varakumar, P., Aparna, B., Byran, G., & Jupudi, S. (2021). Identification of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors for COVID-19 by molecular docking, free energy calculation and molecular dynamics studies. Journal of Biomolecular Structure and Dynamics, 39(15), 5551–5562.

Rethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., Koffel, J. B., PRISMA-S Group, Blunt, H., Brigham, T., Chang, S., Clark, J., Conway, A., Couban, R., De Kock, S., Farrah, K., Fehrmann, P., Foster, M., Fowler, S. A., … Young, S. (2021). PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Systematic Reviews, 10(1), 39. https://doi.org/10.1186/s13643-020-01542-z

Riegel, J., Mayer, W., & van Havre, Y. (2016). FreeCAD. Freecadspec2002.

Samson Babalola, S., & Akinyi Genga, C. (2024). Managing Digital Transformation in African Higher Education Institutions: Challenges and Opportunities. International Journal of E-Learning & Distance Education, 39(1).

Shan, N., Zhou, M., Hanchett, M. K., Chen, J., & Liu, B. (2017). Practical principles of density functional theory for catalytic reaction simulations on metal surfaces–from theory to applications. Molecular Simulation, 43(10–11), 861–885.

Sharma, N., & Gobbert, M. K. (2010). A comparative evaluation of Matlab, Octave, FreeMat, and Scilab for research and teaching.

Shirdel, S., Valand, S., Fazli, F., Winther-Sørensen, B., Aromada, S. A., Karunarathne, S., & Øi, L. E. (2022). Sensitivity Analysis and Cost Estimation of a CO2 Capture Plant in Aspen HYSYS. ChemEngineering, 6(2), 28. https://doi.org/10.3390/chemengineering6020028

Skelly, L., & Chiware, E. R. T. (2022). African researchers do not think differently about Open Data. Frontiers in Research Metrics and Analytics, 7, 950212. https://doi.org/10.3389/frma.2022.950212

Skrzyniarz, M., Morel, S., & Rzącki, J. (2024). Prediction of Chemical Composition of Gas Combustion Products from Thermal Waste Conversion. Processes, 12(12), 2728.

Spiekermann, K., Pattanaik, L., & Green, W. H. (2022). High accuracy barrier heights, enthalpies, and rate coefficients for chemical reactions. Scientific Data, 9(1), 417.

Sulzer, V., Marquis, S. G., Timms, R., Robinson, M., & Chapman, S. J. (2021). Python battery mathematical modelling (PyBaMM). Journal of Open Research Software, 9(1).

Sun, Q., Berkelbach, T. C., Blunt, N. S., Booth, G. H., Guo, S., Li, Z., Liu, J., McClain, J. D., Sayfutyarova, E. R., & Sharma, S. (2018). PySCF: the Python‐based simulations of chemistry framework. Wiley Interdisciplinary Reviews: Computational Molecular Science, 8(1), e1340.

Tangsriwong, K., Lapchit, P., Kittijungjit, T., Klamrassamee, T., Sukjai, Y., & Laoonual, Y. (2020). Modeling of chemical processes using commercial and open-source software: A comparison between Aspen Plus and DWSIM. IOP Conference Series: Earth and Environmental Science, 463(1), 012057. https://doi.org/10.1088/1755-1315/463/1/012057

Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in ’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. https://doi.org/10.1016/j.cpc.2021.108171

Tlili, A., Altinay, F., Huang, R., Altinay, Z., Olivier, J., Mishra, S., Jemni, M., & Burgos, D. (2022). Are we there yet? A systematic literature review of Open Educational Resources in Africa: A combined content and bibliometric analysis. PLOS ONE, 17(1), e0262615. https://doi.org/10.1371/journal.pone.0262615

UNESCO. (2021). Recommendation on Open Science. United Nations Educational, Scientific and Cultural Organization. https://unesdoc.unesco.org/ark:/48223/pf0000383771

Valiev, M., Bylaska, E. J., Govind, N., Kowalski, K., Straatsma, T. P., Van Dam, H. J. J., Wang, D., Nieplocha, J., Aprà, E., & Windus, T. L. (2010). NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Computer Physics Communications, 181(9), 1477–1489.

Valverde, J. L., Ferro, V. R., & Giroir‐Fendler, A. (2023). Automation in the simulation of processes with Aspen HYSYS: An academic approach. Computer Applications in Engineering Education, 31(2), 376–388.

van Balkom, K. F. A. (n.d.). COMSOL as tool for modelling liquid-solid mass transfer and hydrodynamics in structured packed beds.

Vodeb, O., Farinazzo Bergamo Dias Martins, P., Strmčnik, D., Hodnik, N., & Gaberšček, M. (2025). ElectroKitty: A Python Tool for Modeling Electrochemical Data Including Non-Langmuir Adsorption. ACS Electrochemistry.

Yan, H., Nie, B., Peng, C., Liu, P., Wang, X., Yin, F., Gong, J., Wei, Y., & Lin, S. (2021). Molecular model construction of low-quality coal and molecular simulation of chemical bond energy combined with materials studio. Energy & Fuels, 35(21), 17602–17616.

Zema, T. B. (2022). A 3-D numerical investigation and parametric _ cfd analysis of flow through a convergent-divergent nozzle using ansys _ cfx. J. Univ. Shanghai Sci. Technol., 24, 305–314.

Zheng, W. (2023). Python for electrochemistry: A free and all-in-one toolset. ECS Advances, 2(4), 040502.

Downloads

Published

2026-02-07

How to Cite

Malimusi, B. G., & Masina, B. G. (2026). Open-Source Modelling Tools in Chemical Engineering: Opportunities and Adoption in Malawi and Africa. International Journal of Computing and Engineering, 8(2), 1–22. https://doi.org/10.47941/ijce.3492

Issue

Section

Articles